Patents by Inventor Krzysztof Z. Siejko

Krzysztof Z. Siejko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190167991
    Abstract: A ventricularly implantable medical device that includes a sensing module that is configured to detect an atrial fiducial and identify an atrial contraction based at least on part on the detected atrial fiducial. Control circuitry in the implantable medical device is configured to deliver a ventricular pacing therapy to a patient's heart based at least in part on the identified atrial contraction, and can automatically switch or revert the ventricular pacing therapies on the fly.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 6, 2019
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Jeffrey E. Stahmann, Keith R. Maile, Krzysztof Z. Siejko, Allan Charles Shuros, William J. Linder, Benjamin J. Haasl, Brendan Early Koop, Michael J. Kane
  • Patent number: 10311533
    Abstract: This document discusses, among other things, systems and methods to enable physician labels on a remote server and use labels to verify and improve algorithm results. A method comprises using patient data in an automated analysis to obtain a result; receiving a message from the user, wherein the message is related to the result; and using at least a portion of the message to automatically modify the analysis.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: June 4, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Haresh G. Sachanandani, Shelley Cazares, Jon Peterson, Robert J. Sweeney, Kevin J. Stalsberg, Krzysztof Z. Siejko, Gerrard M. Carlson
  • Patent number: 10299688
    Abstract: Methods and devices for combining multiple signals from multiple sensing vectors for use in wearable or implantable cardiac devices. Signals from multiple vectors may be combined using weighting factors and/or by conversion to different coordinate systems than the original inputs, which may or may not be normalized to patient anatomy. Signals from multiple sensing vectors may be combined prior to or after several analytical steps or processes including before or after filtering, and before or after cardiac cycle detection. Cardiac cycle detection information may be combined across multiple sensing vectors before or after analysis of individual vectors for noise or overdetection. Cardiac cycle detection information may also be combined across multiple sensing vectors to identify noise and/or overdetection.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: May 28, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Amy Jean Brisben, Venugopal Allavatam, Krzysztof Z. Siejko, Deepa Mahajan, Kevin G. Wika, Keith L. Herrmann, Stephen J. Hahn
  • Publication number: 20190143122
    Abstract: Approaches to rank potential left ventricular (LV) pacing vectors are described. Early elimination tests are performed to determine the viability of LV cathode electrodes. Some LV cathodes are eliminated from further testing based on the early elimination tests. LV cathodes identified as viable cathodes are tested further. Viable LV cathode electrodes are tested for hemodynamic efficacy. Cardiac capture and phrenic nerve activation thresholds are then measured for potential LV pacing vectors comprising a viable LV cathode electrode and an anode electrode. The potential LV pacing vectors are ranked based on one or more of the hemodynamic efficacy of the LV cathodes, the cardiac capture thresholds, and the phrenic nerve activation thresholds.
    Type: Application
    Filed: December 27, 2018
    Publication date: May 16, 2019
    Inventors: Krzysztof Z. Siejko, Shibaji Shome, Jiang Ding
  • Patent number: 10264989
    Abstract: New and alternative approaches to the monitoring of cardiac signal quality for external and/or implantable cardiac devices. In one example, signal quality is monitored continuously or in response to a triggering event or condition and, upon identification of a reduction in signal quality, a device may reconfigure its sensing state. In another example, one or more trends of signal quality are monitored by a device, either continuously or in response to a triggering event or condition, and sensing reconfiguration may be performed in response to identified trends and events. In yet another example, a device may use a looping data capture mode to track sensing data in multiple vectors while primarily relying on less than all sensing vectors to make decisions and, in response to a triggering event or condition, the looped data can be analyzed automatically, without waiting for additional data capture to reconfigure sensing upon identification of the triggering event or condition.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: April 23, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Amy Jean Brisben, Venugopal Allavatam, Krzysztof Z. Siejko, Deepa Mahajan, Kevin G. Wika, Keith L. Herrmann, Stephen J. Hahn
  • Publication number: 20190083789
    Abstract: Systems and methods for managing heart failure are described. The system receives physiological information including a first HS signal corresponding to paced ventricular contractions and a second HS signal corresponding to intrinsic ventricular contractions. The system detects worsening heart failure (WHF) using the received physiological information. A signal analyzer circuit can generate a paced HS metric from the first HS signal and a sensed HS metric from the second HS signal, and determine a concordance indicator between the paced and the sensed HS metrics. In response to the detected WHF, the system can use the concordance indicator to generate a therapy adjustment indicator for adjusting electrostimulation therapy, or a worsening cardiac contractility indicator indicating the detected WHF is attributed to degrading myocardial contractility.
    Type: Application
    Filed: August 28, 2018
    Publication date: March 21, 2019
    Inventors: Pramodsingh Hirasingh Thakur, Jason Humphrey, David J. Ternes, Qi An, Krzysztof Z. Siejko, Michael James Dufresne, Yinghong Yu
  • Publication number: 20190069793
    Abstract: Methods and/or device facilitating and selecting among multiple modes of filtering a cardiac electrical signal, in which one filtering mode includes additional high pass filtering of low frequency signals, relative to the other filtering mode. The selection filtering modes may include comparing sensed signal amplitude to one or more thresholds, using the multiple modes of filtering. In another example, an additional high pass filter is enabled, over and above a default or baseline filtering mode, and the detected cardiac signal is monitored for indications of possible undersensing, and/or for drops in amplitude toward a threshold, and the additional high pass filter may be disabled upon finding of possible undersensing or drop in signal amplitude.
    Type: Application
    Filed: November 1, 2018
    Publication date: March 7, 2019
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Venugopal Allavatam, Stephen J. Hahn, Keith L. Herrmann, Mitchell D. Lanz, Krzysztof Z. Siejko, Benjamin Speakman
  • Publication number: 20190060652
    Abstract: An example of a system includes an implantable medical device (IMD) for implantation in a patient, where the IMD includes a cardiac pace generator, phrenic nerve stimulation (PS) sensor, a memory, and a controller, and where the controller is operably connected to the cardiac pace generator to generate cardiac paces. The controller is configured to provide a trigger for conducting a PS detection procedure and perform the PS detection procedure in response to the trigger. In performing the PS detection procedure the controller is configured to receive a signal from the sensor, detect PS using the signal from the sensor, and record the PS detection in storage within the IMD.
    Type: Application
    Filed: October 11, 2018
    Publication date: February 28, 2019
    Inventors: Holly E. Rockweiler, Sunipa Saha, Aaron R. McCabe, Krzysztof Z. Siejko
  • Patent number: 10194816
    Abstract: Embodiments of the disclosure include systems and methods for reducing false positives in detection of pauses. For example, embodiments include a sensing component configured to obtain values of a first physiological parameter and determine a cardiac pause based on the values of the first physiological parameter. Furthermore, embodiments include performing a validation check of the determined cardiac pause using at least one of: the values of the first physiological parameter or values of a second physiological parameter.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: February 5, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, Deepa Mahajan, Krzysztof Z. Siejko, Pramodsingh H. Thakur, Keith R. Maile, Qi An
  • Patent number: 10195443
    Abstract: Approaches to rank potential left ventricular (LV) pacing vectors are described. Early elimination tests are performed to determine the viability of LV cathode electrodes. Some LV cathodes are eliminated from further testing based on the early elimination tests. LV cathodes identified as viable cathodes are tested further. Viable LV cathode electrodes are tested for hemodynamic efficacy. Cardiac capture and phrenic nerve activation thresholds are then measured for potential LV pacing vectors comprising a viable LV cathode electrode and an anode electrode. The potential LV pacing vectors are ranked based on one or more of the hemodynamic efficacy of the LV cathodes, the cardiac capture thresholds, and the phrenic nerve activation thresholds.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: February 5, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Krzysztof Z. Siejko, Shibaji Shome, Jiang Ding
  • Publication number: 20190008384
    Abstract: Systems and methods for managing machine-generated medical events detected from one or more patients are described herein. A medical event management system includes an event analyzer circuit to detect a medical event using physiological data from a patient-triggered episode acquired from a medical device. The event analyzer circuit determines a confidence score of the medical event detection, and generates an alignment indicator indicating a degree of concordance between the detected medical event and the information about the patient-triggered episode. The system assigns priority information to the patient-triggered episode using the generated alignment indicator and the confidence score of the detection. An output circuit can output the received physiological information to a user or a process according to the assigned priority information.
    Type: Application
    Filed: July 5, 2018
    Publication date: January 10, 2019
    Inventors: Amy Jean Brisben, Qi An, Pramodsingh Hirasingh Thakur, David J. Ternes, JoAnna Trapp Simpson, Viktoria A. Averina, Deepa Mahajan, Sunipa Saha, Krzysztof Z. Siejko
  • Patent number: 10149627
    Abstract: Methods and/or device facilitating and selecting among multiple modes of filtering a cardiac electrical signal, in which one filtering mode includes additional high pass filtering of low frequency signals, relative to the other filtering mode. The selection filtering modes may include comparing sensed signal amplitude to one or more thresholds, using the multiple modes of filtering. In another example, an additional high pass filter is enabled, over and above a default or baseline filtering mode, and the detected cardiac signal is monitored for indications of possible undersensing, and/or for drops in amplitude toward a threshold, and the additional high pass filter may be disabled upon finding of possible undersensing or drop in signal amplitude.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: December 11, 2018
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Venugopal Allavatam, Stephen J. Hahn, Keith L. Herrmann, Mitchell D. Lanz, Krzysztof Z. Siejko, Benjamin Speakman
  • Patent number: 10124174
    Abstract: An example of a system includes an implantable medical device (IMD) for implantation in a patient, where the IMD includes a cardiac pace generator, phrenic nerve stimulation (PS) sensor, a memory, and a controller, and where the controller is operably connected to the cardiac pace generator to generate cardiac paces. The controller is configured to provide a trigger for conducting a PS detection procedure and perform the PS detection procedure in response to the trigger. In performing the PS detection procedure the controller is configured to receive a signal from the sensor, detect PS using the signal from the sensor, and record the PS detection in storage within the IMD.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: November 13, 2018
    Assignee: Cardiac Pacemakes, Inc.
    Inventors: Holly Rockweiler, Sunipa Saha, Aaron R. McCabe, Krzysztof Z. Siejko
  • Patent number: 10123742
    Abstract: In some examples, cardiac cycle detection may be used as an approach to cardiac activity tracking, with one or more second approaches to cardiac activity tracking also available for use. Additional rate measurement relying on different sources or analyses may require extra power consumption over the cycle detection methods. Therefore, new methods and devices are disclosed that selectively activate a second cardiac rate measurement. In some illustrative methods and devices, decisions are made as to whether and which previously collected data, if any, is to be discarded, replaced, or corrected upon activation of the second cardiac rate measurement. In some illustrative methods and devices, a cardiac cycle detection approach to cardiac activity tracking may be bypassed by a second cardiac rate measurement.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: November 13, 2018
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Krzysztof Z. Siejko, Venugopal Allavatam, Amy Jean Brisben, Stephen J. Hahn, Keith L. Herrmann
  • Patent number: 10052488
    Abstract: A refractory period for a pacemaker sensing channel refers to a period of time during which the sensing channel is either blind to incoming electrical signals, termed a blanking interval, and/or during which the device is configured to ignore such signals for purposes of sense event detection. Methods and devices for implementing refractory periods in the context of multi-site left ventricular pacing are described.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: August 21, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: James O. Gilkerson, James Kalgren, Krzysztof Z. Siejko, Jeffrey E. Stahmann
  • Publication number: 20180220917
    Abstract: Methods and devices adapted for cardiac signal analysis. A method or device has accessible to it more than one approach to cardiac cycle rate analysis and is adapted to monitor sensing signal quality. In response to an apparent reduction in signal quality or other trigger, the method or device checks whether an arrhythmia or an actual drop in signal quality is occurring prior to modifying sensing configurations or parameters.
    Type: Application
    Filed: February 6, 2018
    Publication date: August 9, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Amy Jean Brisben, Krzysztof Z. Siejko, Thomas V. Karathanos
  • Patent number: 10016143
    Abstract: Self-correlation enhancements and implementations are described. In particular, certain examples demonstrate the use of a peak selector to identify peaks of a self-correlation function which serve as candidate cardiac rates for an implantable medical device. The approach may enable an alternative calculation of cardiac rate in an implantable medical device as a stand-alone rate detector or as a double-check of other rate calculations.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: July 10, 2018
    Assignee: Cameron Health, Inc.
    Inventor: Krzysztof Z. Siejko
  • Publication number: 20180177422
    Abstract: This document discusses, among other things, systems and methods to adjust arrhythmia detection using physiological information of a patient, including detecting a candidate cardiac event about a threshold, displaying the detected candidate cardiac event to a user, receiving user information about the detected candidate cardiac event, and adjusting an arrhythmia detection threshold based upon the received user information.
    Type: Application
    Filed: December 13, 2017
    Publication date: June 28, 2018
    Inventors: Keith L. Herrmann, Sunipa Saha, Arjun D. Sharma, David L. Perschbacher, Derek D. Bohn, Krzysztof Z. Siejko
  • Patent number: 9993171
    Abstract: Automated pre-implant screening for candidate recipients of implantable medical devices. A set of cutaneous electrodes placed on a patient transcutaneously capture a cardiac signal using a screening device coupled to the electrodes. A first beat rate may be determined by identifying individual R-waves, QRS complexes or cardiac cycles from the captured cardiac signal using the cutaneous electrodes. A second beat rate may be calculated using one of several different methods, for example, by optical measurement, by monitoring heart sounds, by a second electric cardiac signal analysis, or by using an implanted device. The rates are compared to one another and, if a match is identified, the patient is deemed well suited to receive a particular device.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: June 12, 2018
    Assignee: CAMERON HEALTH, INC.
    Inventors: Qi An, Krzysztof Z. Siejko, Deepa Mahajan
  • Publication number: 20180146863
    Abstract: Various system embodiments comprise a stimulator adapted to deliver a stimulation signal for a heart failure therapy, a number of sensors adapted to provide at least a first measurement of a heart failure status and a second measurement of the heart failure status, and a controller. The controller is connected to the stimulator and to the number of sensors. The controller is adapted to use the first and second measurements to create a heart failure status index, and control the stimulator to modulate the signal using the index. Other aspects and embodiments are provided herein.
    Type: Application
    Filed: January 24, 2018
    Publication date: May 31, 2018
    Inventors: Imad Libbus, Krzysztof Z. Siejko, Marina V. Brockway, Robert J. Sweeney