Patents by Inventor Kuan Cheng
Kuan Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12198754Abstract: A circuit comprises a memory array, a tracking bit line and a timing control circuit. The memory array comprises a plurality of tracking cells. The tracking bit line is coupled between a first node and the plurality of tracking cells. The timing control circuit is coupled to the first node and comprises a Schmitt trigger. The Schmitt trigger generates a negative bit line enable signal in response to that a voltage level on the first node being below a low threshold voltage value of the Schmitt trigger. The timing control circuit generates a negative bit line trigger signal according to the negative bit line enable signal for adjusting voltage levels of a plurality of bit lines of the memory array.Type: GrantFiled: June 29, 2023Date of Patent: January 14, 2025Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., TSMC NANJING COMPANY LIMITED, TSMC CHINA COMPANY LIMITEDInventors: Xiu-Li Yang, Lu-Ping Kong, Kuan Cheng, He-Zhou Wan
-
Patent number: 12199097Abstract: A device includes a substrate, a first semiconductor channel over the substrate, and a second semiconductor channel over the substrate laterally offset from the first semiconductor channel. A first gate structure and a second gate structure are over and laterally surround the first and second semiconductor channels, respectively. A first inactive fin is between the first gate structure and the second gate structure. A dielectric feature over the inactive fin includes multiple layers of dielectric material formed through alternating deposition and etching steps.Type: GrantFiled: September 22, 2021Date of Patent: January 14, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Yi-Ruei Jhan, Kuan-Ting Pan, Kuo-Cheng Chiang, Kuan-Lun Cheng, Chih-Hao Wang
-
Patent number: 12199190Abstract: A semiconductor device according to the present disclosure includes a fin structure over a substrate, a vertical stack of silicon nanostructures disposed over the fin structure, an isolation structure disposed around the fin structure, a germanium-containing interfacial layer wrapping around each of the vertical stack of silicon nanostructures, a gate dielectric layer wrapping around the germanium-containing interfacial layer, and a gate electrode layer wrapping around the gate dielectric layer.Type: GrantFiled: June 5, 2023Date of Patent: January 14, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Mao-Lin Huang, Jia-Ni Yu, Lung-Kun Chu, Chung-Wei Hsu, Chih-Hao Wang, Kuo-Cheng Chiang, Kuan-Lun Cheng
-
Patent number: 12191307Abstract: A method for fabricating a semiconductor device includes providing a fin in a first region of a substrate. The fin includes a plurality of a first type of epitaxial layers and a plurality of a second type of epitaxial layers. A portion of a layer of the second type of epitaxial layers in a channel region of the first fin is removed to form a first gap between a first layer of the first type of epitaxial layers and a second layer of the first type of epitaxial layers. A first portion of a first gate structure is formed within the first gap and extending from a first surface of the first layer of the first type of epitaxial layers to a second surface of the second layer of the first type of epitaxial layers. A first source/drain feature is formed abutting the first portion of the first gate structure.Type: GrantFiled: March 14, 2022Date of Patent: January 7, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Kuo-Cheng Ching, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
-
Patent number: 12191305Abstract: A first gate-all-around (GAA) transistor and a second GAA transistor may be formed on a substrate. The first GAA transistor includes at least one silicon plate, a first gate structure, a first source region, and a first drain region. The second GAA transistor includes at least one silicon-germanium plate, a second gate structure, a second source region, and a second drain region. The first GAA transistor may be an n-type field effect transistor, and the second GAA transistor may be a p-type field effect transistor. The gate electrodes of the first gate structure and the second gate structure may include a same conductive material. Each silicon plate and each silicon-germanium plate may be single crystalline and may have a same crystallographic orientation for each Miller index.Type: GrantFiled: July 28, 2023Date of Patent: January 7, 2025Assignee: Taiwan Semiconductor Manufacturing Company LimitedInventors: Shi Ning Ju, Kuo-Cheng Chiang, Chih-Hao Wang, Kuan-Lun Cheng, Guan-Lin Chen
-
Patent number: 12190033Abstract: A method for a parallelism-aware wavelength-routed optical networks-on-chip design is proposed, which is executed by a computer, the method comprising using the computer to perform the following: providing a WRONoC netlist, design specs and design rules; performing a network construction such that potential positions of each core of a plurality of cores, a plurality of waveguides and a plurality of microring resonators (MRRs) are determined to create a topology; performing a message routing to minimize MRR type usage of the MRRs in the topology; and performing a MRR radius selection to select a radius from MRR-radius options for each MRR type in said topology based on a simulated annealing.Type: GrantFiled: February 28, 2022Date of Patent: January 7, 2025Assignee: ANAGLOBE TECHNOLOGY, INC.Inventors: Kuan-Cheng Chen, Yan-Lin Chen, Yu-Sheng Lu, Yao-Wen Chang, Yu-Tsang Hsieh
-
Publication number: 20250006803Abstract: A method includes forming a first transistor over a substrate, in which the first transistor includes first source/drain epitaxy structures; forming a second transistor over the first transistor, in which the second transistor includes second source/drain epitaxy structures; forming an opening extending through one of the second source/drain epitaxy structures and exposing a top surface of one of the first source/drain epitaxy structures; performing a first deposition process to form a first metal in the opening, in which a first void is formed in the first metal during the first deposition process; performing a first etching back process to the first metal until the first void is absent; and performing a second deposition process to form a second metal in the opening and over the first metal.Type: ApplicationFiled: June 28, 2023Publication date: January 2, 2025Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY,, LTD.Inventors: Yuting CHENG, Kuan-Kan HU, Tzu Pei CHEN, Chia-Hung CHU, Po-Chin CHANG, Sung-Li WANG
-
Publication number: 20250006742Abstract: A semiconductor device that has two transistors and a source/drain contact. The first transistor has a layer of semiconductor material that acts as a channel, a structure that serves as a gate and wraps around the semiconductor channel layer, and two epitaxy structures on either end of the semiconductor channel layer that function as the source and drain. The second transistor is situated above the first transistor and has similar components, including a semiconductor channel layer, gate structure, and source/drain epitaxy structures. The connection between the first and second source/drain epitaxy structures is made by a source/drain contact that passes through one of the second source/drain epitaxy structures. This contact is made up of a metal plug and a metal liner that lines the plug.Type: ApplicationFiled: July 1, 2023Publication date: January 2, 2025Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Yuting CHENG, Tzu Pei CHEN, Kuan-Kan HU, Shao-An WANG, Jung-Hao CHANG, Sung-Li WANG
-
Patent number: 12184285Abstract: A latch circuit includes a latch clock generator configured to generate a latched clock signal based on a clock signal and an enable signal, and an input latch coupled to the latch clock generator to receive the latched clock signal. The input latch is configured to generate a latched output signal based on the latched clock signal and an input signal. In response to the enable signal having a disabling logic level, the latch clock generator is configured to set a logic level of the latched clock signal to a corresponding disabling logic level, regardless of the clock signal. In response to the corresponding disabling logic level of the latched clock signal, the input latch is configured to hold a logic level of the latched output signal unchanged, regardless of the input signal having one or more logic level switchings, while the enable signal is having the disabling logic level.Type: GrantFiled: July 31, 2023Date of Patent: December 31, 2024Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., TSMC CHINA COMPANY, LIMITEDInventors: XiuLi Yang, Kuan Cheng, He-Zhou Wan, Ching-Wei Wu, Wenchao Hao
-
Patent number: 12183808Abstract: A semiconductor device includes a plurality of nanostructures. The nanostructures each contain a semiconductive material. A plurality of first spacers circumferentially wrap around the nanostructures. A plurality of second spacers circumferentially wrap around the first spacers. A plurality of third spacers is disposed between the second spacers vertically. A gate structure surrounds the second spacers and the third spacers.Type: GrantFiled: July 19, 2023Date of Patent: December 31, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Kuo-Cheng Ching, Chih-Hao Wang, Shi Ning Ju, Kuan-Lun Cheng
-
Patent number: 12183432Abstract: A circuit includes a series of a first latch circuit, selection circuit, second latch circuit, and pre-decoder. A control circuit, based on a clock signal, outputs control signals to the selection circuit and first and second latch circuits, and, to the pre-decoder, a pulse signal including a first pulse during a first portion of a clock period in response to a read enable signal having a first logical state, and a second pulse during a second portion of the clock period in response to a write enable signal having the first logical state. Based on the control signals, the selection circuit and first and second latch circuits output read and write addresses to the pre-decoder during the respective first and second clock period portions, and the pre-decoder outputs a partially decoded address in response to each of the read address and first pulse, and the write address and second pulse.Type: GrantFiled: July 18, 2023Date of Patent: December 31, 2024Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., TSMC CHINA COMPANY, LIMITED, TSMC NANJING COMPANY, LIMITEDInventors: XiuLi Yang, Ching-Wei Wu, He-Zhou Wan, Kuan Cheng, Luping Kong
-
Publication number: 20240429278Abstract: A semiconductor device includes a semiconductor substrate, a first semiconductor structure, a second semiconductor structure, a third semiconductor structure, a dielectric wall, and a first isolation feature. The first semiconductor structure, the second semiconductor structure and the third semiconductor structure are disposed on the semiconductor substrate. The first semiconductor structure is disposed between the second semiconductor structure and the third semiconductor structure. The dielectric wall is disposed on the semiconductor substrate and is connected between the first semiconductor structure and the second semiconductor structure. The first isolation feature is disposed between the first semiconductor structure and the third semiconductor structure, and extends into the semiconductor substrate.Type: ApplicationFiled: June 20, 2023Publication date: December 26, 2024Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Kuan-Ting PAN, Kuo-Cheng CHIANG, Chih-Hao WANG
-
Publication number: 20240421185Abstract: A device includes a substrate, a first semiconductor fin over the substrate extending in a first lateral direction, a first vertical stack of semiconductor nanosheets over the substrate extending in the first lateral direction, and an inactive fin between the first semiconductor fin and the first vertical stack extending in the first lateral direction. A first gate structure surrounds and covers the first semiconductor fin, and extends in a second lateral direction substantially perpendicular to the first lateral direction. A second gate structure surrounds and covers the first vertical stack, and extends in the second lateral direction.Type: ApplicationFiled: July 26, 2024Publication date: December 19, 2024Inventors: Kuan-Ting PAN, Kuo-Cheng CHIANG, Shi-Ning JU, Yi-Ruei JHAN, Yen-Ming CHEN, Chih-Hao WANG
-
Patent number: 12170280Abstract: A method of manufacturing a gate structure includes at least the following steps. A gate dielectric layer is formed. A work function layer is deposited on the gate dielectric layer. A barrier layer is formed on the work function layer. A metal layer is deposited on the barrier layer to introduce fluorine atoms into the barrier layer. The barrier layer is formed by at least the following steps. A first TiN layer is formed on the work function layer. A top portion of the first TiN layer is converted into a trapping layer, and the trapping layer includes silicon atoms or aluminum atoms. A second TiN layer is formed on the trapping layer.Type: GrantFiled: November 29, 2023Date of Patent: December 17, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ji-Cheng Chen, Ching-Hwanq Su, Kuan-Ting Liu, Shih-Hang Chiu
-
Patent number: 12170231Abstract: Semiconductor device and the manufacturing method thereof are disclosed. An exemplary method comprises forming a first stack structure and a second stack structure in a first area over a substrate, wherein each of the stack structures includes semiconductor layers separated and stacked up; depositing a first interfacial layer around each of the semiconductor layers of the stack structures; depositing a gate dielectric layer around the first interfacial layer; forming a dipole oxide layer around the gate dielectric layer; removing the dipole oxide layer around the gate dielectric layer of the second stack structure; performing an annealing process to form a dipole gate dielectric layer for the first stack structure and a non-dipole gate dielectric layer for the second stack structure; and depositing a first gate electrode around the dipole gate dielectric layer of the first stack structure and the non-dipole gate dielectric layer of the second stack structure.Type: GrantFiled: July 26, 2022Date of Patent: December 17, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Chung-Wei Hsu, Kuo-Cheng Chiang, Kuan-Lun Cheng, Hou-Yu Chen, Ching-Wei Tsai, Chih-Hao Wang, Lung-Kun Chu, Mao-Lin Huang, Jia-Ni Yu
-
Patent number: 12170334Abstract: A semiconductor structure includes a stack of semiconductor layers disposed over a substrate, a metal gate structure disposed over and interleaved with the stack of semiconductor layers, the metal gate structure including a gate electrode disposed over a gate dielectric layer, a first isolation structure disposed adjacent to a first sidewall of the stack of semiconductor layers, where the gate dielectric layer fills space between the first isolation structure and the first sidewall of the stack of semiconductor layers, and a second isolation structure disposed adjacent to a second sidewall of the stack of semiconductor layers, where the gate electrode fills the space between the second isolation structure and the second sidewall of the stack of semiconductor layers.Type: GrantFiled: August 9, 2023Date of Patent: December 17, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Shi Ning Ju, Kuo-Cheng Chiang, Guan-Lin Chen, Chih-Hao Wang, Kuan-Lun Cheng
-
Publication number: 20240413149Abstract: An integrated circuit is provided which includes a first complementary field-effect transistor and a second complementary field-effect transistor. The first complementary field-effect transistor includes at least two first transistors respectively located on a first layer and a second layer. The second complementary field-effect transistor is disposed adjacent to the first complementary field-effect transistor. The second complementary field-effect transistor includes at least two second transistors respectively located on the first layer and the second layer. Type of one of the at least two first transistors located on the first layer is different from type of one of the at least two second transistors located on the first layer.Type: ApplicationFiled: June 7, 2023Publication date: December 12, 2024Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Ching-Yu HUANG, Wei-Cheng TZENG, Chun-Yen LIN, Shih-Wei PENG, Kuan Yu CHEN, Wei-Cheng LIN, Jiann-Tyng TZENG
-
Patent number: 12165926Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a first and second gate electrode layers, and a dielectric feature disposed between the first and second gate electrode layers. The dielectric feature has a first surface. The structure further includes a first conductive layer disposed on the first gate electrode layer. The first conductive layer has a second surface. The structure further includes a second conductive layer disposed on the second gate electrode layer. The second conductive layer has a third surface, and the first, second, and third surfaces are coplanar. The structure further includes a third conductive layer disposed over the first conductive layer, a fourth conductive layer disposed over the second conductive layer, and a dielectric layer disposed on the first surface of the dielectric feature. The dielectric layer is disposed between the third conductive layer and the fourth conductive layer.Type: GrantFiled: July 20, 2023Date of Patent: December 10, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Kuan-Ting Pan, Kuo-Cheng Chiang, Shang-Wen Chang, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
-
Publication number: 20240405021Abstract: A device includes first nanostructures over a substrate; second nanostructures over the substrate, wherein the first nanostructures are laterally separated from the second nanostructures by an isolation structure between the first nanostructures and the second nanostructures; a first gate structure around each first nanostructure and around each second nanostructure, wherein the first gate structure extends over the isolation structure; third nanostructures over the substrate; and a second gate structure around each third nanostructure, wherein the second gate structure is separated from the first gate structure by a dielectric wall.Type: ApplicationFiled: September 15, 2023Publication date: December 5, 2024Inventors: Kuan-Ting Pan, Chia-Hao Chang, Jia-Chuan You, Kuo-Cheng Chiang, Chih-Hao Wang
-
Publication number: 20240395880Abstract: A method of making a semiconductor device includes manufacturing an active area fin extending in a first direction over a substrate, wherein the active area fin comprises a source region, a drain region, and a channel region between the source region and the drain region. The method includes manufacturing an isolation structure next to the active area fin. The method includes manufacturing isolating fins next to the active area fin and over the isolation structure. The method includes trimming the isolating fins in first fin regions adjacent to the channel regions of the active area fin. The method includes depositing a gate electrode material against the first fin region and the gate dielectric in the channel region.Type: ApplicationFiled: July 31, 2024Publication date: November 28, 2024Inventors: Jia-Chuan YOU, Kuan-Ting PAN, Shi Ning JU, Kuo-Cheng CHIANG, Chih-Hao WANG