Patents by Inventor Kuen Chee Ee

Kuen Chee Ee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210012795
    Abstract: A piezoelectric actuator assembly is described. The piezoelectric actuator assembly includes a first, second and third active piezoelectric layers. The first layer includes a top surface and a bottom surface. The second layer includes a top surface and a bottom surface over the top surface of the first layer. The third layer includes a top surface and a bottom surface over the top surface of the second layer. The first single and second layers can define a first effective electrode length. Similarly, the second and third layers can define a second effective electrode length configured to be longer than the first effective electrode length.
    Type: Application
    Filed: June 24, 2020
    Publication date: January 14, 2021
    Inventors: Long Zhang, Kuen Chee Ee, David Glaess, Preecha Sudachun, Ekaratch Pankaew
  • Patent number: 10867628
    Abstract: A multi-layer microactuator for a hard disk drive suspension includes a piezoelectric (“PZT”) layer, a constraining layer, a lower electrode layer, a middle electrode layer, and an upper electrode layer. The lower electrode layer is on a bottom surface of the PZT layer and includes a first lower electrode island, a second lower electrode island, and a third lower electrode island. The second lower electrode island includes a finger extending from a main body portion towards a first end of the PZT layer. The middle electrode layer is disposed between a top surface of the PZT layer and a bottom surface of the constraining layer. The middle electrode layer including a first middle electrode island and a second middle electrode island, the second middle electrode island including a finger extending from a main body portion towards the first end of the PZT layer.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: December 15, 2020
    Assignee: Magnecomp Corporation
    Inventors: Kuen Chee Ee, Long Zhang, Peter Hahn, David Glaess, Amornrat Jaturawit
  • Patent number: 10854225
    Abstract: A PZT microactuator such as for a hard disk drive has a restraining layer bonded on its side that is opposite the side on which the PZT is mounted. The restraining layer comprises a stiff and resilient material such as stainless steel. The restraining layer can cover most or all of the top of the PZT, with an electrical connection being made to the PZT where it is not covered by the restraining layer. The restraining layer reduces bending of the PZT as mounted and hence increases effective stroke length, or reverses the sign of the bending which increases the effective stroke length of the PZT even further. The restraining layer can be one or more active layers of PZT material that act in the opposite direction as the main PZT layer. The restraining layer(s) may be thinner than the main PZT layer.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: December 1, 2020
    Assignee: Magnecomp Corporation
    Inventors: Peter Hahn, Kuen Chee Ee, Long Zhang
  • Publication number: 20200372930
    Abstract: A flexure assembly is described. The flexure assembly includes a gimbal portion on configured to receive a slider. The gimbal portion includes a first surface and a second surface which is opposite to the first surface. The slider is mounted on the second surface. The flexure assembly also includes a pair of microactuator elements. The flexure assembly also includes a tongue of the gimbal portion on which the slider is mounted. The tongue includes a dimple point which represents the center of the tongue. The flexure assembly also includes a pair of first supporting portions and a pair of second supporting portions of the gimbal portion. A pair of end portions are individually secured to the tongue and the first supporting portions and the pair of second supporting portions. The flexure assembly also includes a conductive circuit portion unsupported between a first stationary part and the pair of end portions.
    Type: Application
    Filed: May 13, 2020
    Publication date: November 26, 2020
    Inventors: Kuen Chee Ee, Long Zhang, David Glaess
  • Patent number: 10839835
    Abstract: A dual stage actuated suspension has a first piezoelectric microactuator on the trace gimbal assembly (TGA), and a pseudo feature located laterally opposite the microactuator. The pseudo feature is formed integrally with the TGA from at least one of the base metal layer, the insulative layer, and the conductive layer that make up the TGA. The pseudo feature helps to balance the suspension. The suspension can optionally have a second microactuator located proximal of the first microactuator in order to perform coarser positioning than the first microactuator, such that the suspension is a tri-stage actuated suspension.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: November 17, 2020
    Assignee: Magnecomp Corporation
    Inventors: Peter Hahn, Kuen Chee Ee, Long Zhang, David Glaess
  • Publication number: 20200349970
    Abstract: A multi-layer microactuator for a hard disk drive suspension includes a piezoelectric (“PZT”) layer, a constraining layer, a lower electrode layer, a middle electrode layer, and an upper electrode layer. The lower electrode layer is on a bottom surface of the PZT layer and includes a first lower electrode island, a second lower electrode island, and a third lower electrode island. The second lower electrode island includes a finger extending from a main body portion towards a first end of the PZT layer. The middle electrode layer is disposed between a top surface of the PZT layer and a bottom surface of the constraining layer. The middle electrode layer including a first middle electrode island and a second middle electrode island, the second middle electrode island including a finger extending from a main body portion towards the first end of the PZT layer.
    Type: Application
    Filed: July 16, 2020
    Publication date: November 5, 2020
    Inventors: Kuen Chee Ee, Long Zhang, Peter Hahn, David Glaess, Amornrat Jaturawit
  • Publication number: 20200327904
    Abstract: A PZT microactuator such as for a hard disk drive has a restraining layer bonded on its side that is opposite the side on which the PZT is mounted. The restraining layer comprises a stiff and resilient material such as stainless steel. The restraining layer can cover most or all of the top of the PZT, with an electrical connection being made to the PZT where it is not covered by the restraining layer. The restraining layer reduces bending of the PZT as mounted and hence increases effective stroke length, or reverses the sign of the bending which increases the effective stroke length of the PZT even further. The restraining layer can be one or more active layers of PZT material that act in the opposite direction as the main PZT layer. The restraining layer(s) may be thinner than the main PZT layer.
    Type: Application
    Filed: April 23, 2020
    Publication date: October 15, 2020
    Inventors: David Glaess, Kuen Chee Ee, Long Zhang, Chris Dunn
  • Patent number: 10789978
    Abstract: A dual stage actuated suspension has a first piezoelectric microactuator on the trace gimbal assembly (TGA), and a pseudo feature located laterally opposite the microactuator. The pseudo feature is formed integrally with the TGA from at least one of the base metal layer, the insulative layer, and the conductive layer that make up the TGA. The pseudo feature helps to balance the suspension. The suspension can optionally have a second microactuator located proximal of the first microactuator in order to perform coarser positioning than the first microactuator, such that the suspension is a tri-stage actuated suspension.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: September 29, 2020
    Assignee: Magnecomp Corporation
    Inventors: Kuen Chee Ee, Long Zhang, David Glaess
  • Patent number: 10762922
    Abstract: A method of assembly a dual stage actuated suspension includes either applying an adhesive to a microactuator motor and then B-staging the adhesive, or applying an adhesive that has already been B-staged such as in film adhesive form to the microactuator then assembling the microactuator into a suspension and then finishing the adhesive cure. The adhesive can be applied to bulk piezoelectric material, with the adhesive being B-staged either before or after it is applied to the bulk piezoelectric material, and the piezoelectric material then singulated into a number of individual piezoelectric microactuators. The method allows greater control over how much adhesive is used, and greater control over spread of that adhesive and control over potential contamination, than traditional liquid epoxy dispense methods.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: September 1, 2020
    Assignee: Magnecomp Corporation
    Inventors: Peter Hahn, Kuen Chee Ee, Long Zhang
  • Patent number: 10748564
    Abstract: A multi-layer microactuator for a hard disk drive suspension includes a piezoelectric (“PZT”) layer, a constraining layer, a lower electrode layer, a middle electrode layer, and an upper electrode layer. The lower electrode layer is on a bottom surface of the PZT layer and includes a first lower electrode island, a second lower electrode island, and a third lower electrode island. The second lower electrode island includes a finger extending from a main body portion towards a first end of the PZT layer. The middle electrode layer is disposed between a top surface of the PZT layer and a bottom surface of the constraining layer. The middle electrode layer including a first middle electrode island and a second middle electrode island, the second middle electrode island including a finger extending from a main body portion towards the first end of the PZT layer.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: August 18, 2020
    Assignee: Magnecomp Corporation
    Inventors: Kuen Chee Ee, Long Zhang, Peter Hahn, David Glaess, Amornrat Jaturawit
  • Publication number: 20200251133
    Abstract: A PZT microactuator such as for a hard disk drive has a restraining layer bonded on its side that is opposite the side on which the PZT is mounted. The restraining layer comprises a stiff and resilient material such as stainless steel. The restraining layer can cover most or all of the top of the PZT, with an electrical connection being made to the PZT where it is not covered by the restraining layer. The restraining layer reduces bending of the PZT as mounted and hence increases effective stroke length, or reverses the sign of the bending which increases the effective stroke length of the PZT even further. The restraining layer can be one or more active layers of PZT material that act in the opposite direction as the main PZT layer. The restraining layer(s) may be thinner than the main PZT layer.
    Type: Application
    Filed: March 30, 2020
    Publication date: August 6, 2020
    Inventors: Peter Hahn, Kuen Chee Ee, Long Zhang
  • Publication number: 20200195170
    Abstract: An electrical connection structure for connecting a piezoelectric element and an electrical circuit to each other with a conductive adhesive is described. The electrical connection structure includes an epoxy, a conductive component surrounded by the epoxy, and a trace feature implemented on top of the electrical connection structure.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 18, 2020
    Inventors: Kuen Chee Ee, Peter Hahn, David Glaess, Keith A. Vanderlee
  • Patent number: 10679652
    Abstract: Embodiments of an adhesive containment structure are provided herein. The suspension includes a base portion that includes a metal support layer, an insulation layer including an insulating material on the metal support layer, and a signal conductor layer. The suspension includes a gimbaled portion, a microactuator adhered to the support layer. The suspension also includes an adhesive containment structure, the adhesive containment structure includes a first portion of the insulating material, a second portion of the insulating material, and a third portion of the insulating material, the first and second portions of the insulating material being separated by a gap, and the third portion of the insulating material disposed within the gap. Adhesive is disposed within the gap of the adhesive containment structure, the adhesive adhering the microactuator to the third portion of the insulating material.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: June 9, 2020
    Assignee: Magnecomp Corporation
    Inventors: Kuen Chee Ee, Sitthipong Footrakul, Thana Meesomphop
  • Patent number: 10607642
    Abstract: A PZT microactuator such as for a hard disk drive has a restraining layer bonded on its side that is opposite the side on which the PZT is mounted. The restraining layer comprises a stiff and resilient material such as stainless steel. The restraining layer can cover most or all of the top of the PZT, with an electrical connection being made to the PZT where it is not covered by the restraining layer. The restraining layer reduces bending of the PZT as mounted and hence increases effective stroke length, or reverses the sign of the bending which increases the effective stroke length of the PZT even further. The restraining layer can be one or more active layers of PZT material that act in the opposite direction as the main PZT layer. The restraining layer(s) may be thinner than the main PZT layer.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: March 31, 2020
    Assignee: MAGNECOMP CORPORATION
    Inventors: Peter Hahn, Kuen Chee Ee, Long Zhang
  • Publication number: 20200091404
    Abstract: A piezoelectric actuator assembly is described. The assembly including a first layer including a top and a bottom surfaces. The assembly including a second layer having a top and a bottom surfaces, the bottom surface of the second layer is disposed over the top surface of the first layer. The assembly including a third layer having a top and a bottom surfaces, the bottom surface of the third layer is disposed over the top surface of the second layer. The assembly includes a first electrode, a second electrode, a third electrode, and a fourth electrode. The third electrode is configured to be shorter than the second electrode such that the active PZT length of the second layer and the third layer is shorter than the active PZT length of the first layer.
    Type: Application
    Filed: September 9, 2019
    Publication date: March 19, 2020
    Inventors: Long Zhang, Kuen Chee Ee, David Glaess, Peter Hahn, Johnathan Phu
  • Publication number: 20200075049
    Abstract: A method of manufacturing a piezoelectric microactuator having a wrap-around electrode includes forming a piezoelectric element having a large central electrode on a top face, and having a wrap-around electrode that includes the bottom face, two opposing ends of the device, and two opposing end portions of the top face. The device is then cut through the middle, separating the device into two separate piezoelectric microactuators each having a wrap-around electrode.
    Type: Application
    Filed: October 30, 2019
    Publication date: March 5, 2020
    Inventors: Peter Hahn, Kuen Chee Ee, Long Zhang, David Glaess
  • Publication number: 20190362746
    Abstract: A method of assembly a dual stage actuated suspension includes either applying an adhesive to a microactuator motor and then B-staging the adhesive, or applying an adhesive that has already been B-staged such as in film adhesive form to the microactuator then assembling the microactuator into a suspension and then finishing the adhesive cure. The adhesive can be applied to bulk piezoelectric material, with the adhesive being B-staged either before or after it is applied to the bulk piezoelectric material, and the piezoelectric material then singulated into a number of individual piezoelectric microactuators. The method allows greater control over how much adhesive is used, and greater control over spread of that adhesive and control over potential contamination, than traditional liquid epoxy dispense methods.
    Type: Application
    Filed: August 12, 2019
    Publication date: November 28, 2019
    Inventors: Peter HAHN, Kuen Chee Ee, Long Zhang
  • Patent number: 10482909
    Abstract: A dual stage actuated (DSA) suspension uses two shear-mode PZT microactuators to finely position the head slider. The bottom surfaces of the PZTs are affixed to the flexure, and the PZT top surfaces move forward and backward, respectively, in push-pull fashion when the PZTs are activated. Flexible connector arms attach the tops surfaces of the PZTs to the gimbal tongue such that activating the PZTs causes the gimbal tongue to rotate, with the connector arms acting as levers to magnify the motion such that a relatively small shear movement of the PZTs results in a significantly larger lateral movement of the head slider across the data disk.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: November 19, 2019
    Assignee: Magnecomp Corporation
    Inventor: Kuen Chee Ee
  • Publication number: 20190318762
    Abstract: A suspension assembly is described. The suspension assembly includes a load beam, the load beam includes a first set of spring extensions connecting a rigid region and a mounting region of the load beam. The suspension assembly also includes a base plate coupled to the mounting region of the load beam. The base plate includes two hinge members, each of the hinge members includes a second spring extension connected to the first set of spring extensions and coupling the load beam and the base plate. The base plate also includes a bender on a first side of the load beam connected to one of the two hinge members predisposing the rigid region to move from a first position to a second position.
    Type: Application
    Filed: March 20, 2019
    Publication date: October 17, 2019
    Inventor: Kuen Chee Ee
  • Publication number: 20190311734
    Abstract: A PZT microactuator such as for a hard disk drive has a restraining layer bonded on its side that is opposite the side on which the PZT is mounted. The restraining layer comprises a stiff and resilient material such as stainless steel. The restraining layer can cover most or all of the top of the PZT, with an electrical connection being made to the PZT where it is not covered by the restraining layer. The restraining layer reduces bending of the PZT as mounted and hence increases effective stroke length, or reverses the sign of the bending which increases the effective stroke length of the PZT even further. The restraining layer can be one or more active layers of PZT material that act in the opposite direction as the main PZT layer. The restraining layer(s) may be thinner than the main PZT layer.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 10, 2019
    Inventors: Peter Hahn, Kuen Chee Ee, Long Zhang