Patents by Inventor Kunal Parekh

Kunal Parekh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060046392
    Abstract: The invention includes methods in which an angled implant is utilized to self-align a source/drain region implant with the top edge of a gateline of a vertical transistor structure. The invention also includes methods in which an angled implant is utilized to implant dopant beneath the gateline of a vertical transistor structure. Vertical transistor structures formed in accordance with methodology of the present invention can be incorporated into various types of integrated circuitry, including, for example, DRAM arrays.
    Type: Application
    Filed: August 26, 2004
    Publication date: March 2, 2006
    Inventors: H. Manning, Kunal Parekh, Cem Basceri, Gurtej Sandhu
  • Publication number: 20060043467
    Abstract: A memory device having a field effect transistor with a stepped gate dielectric and a method of making the same are herein disclosed. The stepped gate dielectric is formed on a semiconductor substrate and consists of a pair of charge trapping dielectrics separated by a gate dielectric; a gate conductor is formed thereover. Source and drain areas are formed in the semiconductor substrate on opposing sides of the pair of charge trapping dielectrics. The memory device is made by forming a charge trapping dielectric layer on a semiconductor substrate. A trench is formed through the charge trapping dielectric layer to expose a portion of the semiconductor substrate. A gate dielectric layer is formed within the trench and a gate conductor layer is formed over the charge trapping and gate dielectric layers.
    Type: Application
    Filed: October 25, 2005
    Publication date: March 2, 2006
    Inventors: H. Manning, Kunal Parekh
  • Publication number: 20060043466
    Abstract: A memory device having a field effect transistor with a stepped gate dielectric and a method of making the same are herein disclosed. The stepped gate dielectric is formed on a semiconductor substrate and consists of a pair of charge trapping dielectrics separated by a gate dielectric; a gate conductor is formed thereover. Source and drain areas are formed in the semiconductor substrate on opposing sides of the pair of charge trapping dielectrics. The memory device is made by forming a charge trapping dielectric layer on a semiconductor substrate. A trench is formed through the charge trapping dielectric layer to expose a portion of the semiconductor substrate. A gate dielectric layer is formed within the trench and a gate conductor layer is formed over the charge trapping and gate dielectric layers.
    Type: Application
    Filed: October 25, 2005
    Publication date: March 2, 2006
    Inventors: H. Manning, Kunal Parekh
  • Publication number: 20060043503
    Abstract: The invention includes semiconductor constructions, methods of forming gatelines, and methods of forming transistor structures. The invention can include, for example, a damascene method of forming a gateline. A thin segment of dielectric material is formed between two thicker segments of dielectric material, with the thin and thicker segments of dielectric material being within an opening. A gateline material is formed within the opening and over the thin and thicker segments of dielectric material. The construction comprising the gateline material over the thin and thicker segments of dielectric material can be supported by a semiconductor substrate having a primary surface which defines a horizontal direction. The thin and thicker segments of dielectric material can comprise upper surfaces substantially parallel to the primary surface of the substrate, and can join to one another at steps having primary surfaces substantially orthogonal to the primary surface of the substrate.
    Type: Application
    Filed: September 28, 2005
    Publication date: March 2, 2006
    Inventors: Kunal Parekh, H. Manning
  • Publication number: 20060043505
    Abstract: The invention includes semiconductor constructions, methods of forming gatelines, and methods of forming transistor structures. The invention can include, for example, a damascene method of forming a gateline. A thin segment of dielectric material is formed between two thicker segments of dielectric material, with the thin and thicker segments of dielectric material being within an opening. A gateline material is formed within the opening and over the thin and thicker segments of dielectric material. The construction comprising the gateline material over the thin and thicker segments of dielectric material can be supported by a semiconductor substrate having a primary surface which defines a horizontal direction. The thin and thicker segments of dielectric material can comprise upper surfaces substantially parallel to the primary surface of the substrate, and can join to one another at steps having primary surfaces substantially orthogonal to the primary surface of the substrate.
    Type: Application
    Filed: August 27, 2004
    Publication date: March 2, 2006
    Inventors: Kunal Parekh, H. Manning
  • Publication number: 20060046355
    Abstract: The invention includes methods of forming and/or passivating semiconductor constructions. In particular aspects, various oxides of a semiconductor substrate can be formed by exposing semiconductive material of the substrate to deuterium-enriched steam. In other aspects, a semiconductor construction is passivated by subjecting the construction to an anneal at a temperature of greater than or equal to 350° C. while exposing the construction to a deuterium-enriched ambient.
    Type: Application
    Filed: August 24, 2004
    Publication date: March 2, 2006
    Inventors: Kunal Parekh, Chandra Mouli, M. Roberts, Fernando Gonzalez
  • Publication number: 20060038244
    Abstract: This invention includes gated field effect devices, and methods of forming gated field effect devices. In one implementation, a gated field effect device includes a pair of source/drain regions having a channel region therebetween. A gate is received proximate the channel region between the source/drain regions. The gate has a gate width between the source/drain regions. A gate dielectric is received intermediate the channel region and the gate. The gate dielectric has at least two different regions along the width of the gate. The different regions are characterized by different materials which are effective to define the two different regions to have different dielectric constants k. Other aspects and implementations are contemplated.
    Type: Application
    Filed: October 19, 2005
    Publication date: February 23, 2006
    Inventors: Cem Basceri, H. Manning, Gurtej Sandhu, Kunal Parekh
  • Publication number: 20060001072
    Abstract: This invention includes gated field effect devices, and methods of forming gated field effect devices. In one implementation, a gated field effect device includes a pair of source/drain regions having a channel region therebetween. A gate is received proximate the channel region between the source/drain regions. The gate has a gate width between the source/drain regions. A gate dielectric is received intermediate the channel region and the gate. The gate dielectric has at least two different regions along the width of the gate. The different regions are characterized by different materials which are effective to define the two different regions to have different dielectric constants k. Other aspects and implementations are contemplated.
    Type: Application
    Filed: June 30, 2005
    Publication date: January 5, 2006
    Inventors: Cem Basceri, H. Manning, Gurtej Sandhu, Kunal Parekh
  • Publication number: 20050269648
    Abstract: This invention includes gated field effect devices, and methods of forming gated field effect devices. In one implementation, a gated field effect device includes a pair of source/drain regions having a channel region therebetween. A gate is received proximate the channel region between the source/drain regions. The gate has a gate width between the source/drain regions. A gate dielectric is received intermediate the channel region and the gate. The gate dielectric has at least two different regions along the width of the gate. The different regions are characterized by different materials which are effective to define the two different regions to have different dielectric constants k. Other aspects and implementations are contemplated.
    Type: Application
    Filed: June 4, 2004
    Publication date: December 8, 2005
    Inventors: Cem Basceri, H. Montgomery Manning, Gurtej Sandhu, Kunal Parekh
  • Publication number: 20050255701
    Abstract: The invention includes methods by which a fuse box of a semiconductor construction is fabricated to have a substantially uniform layer over fuses extending therein. In particular aspects, the invention includes methods in which one or more processing steps associated with fabrication and patterning of bond pads and redistribution layers is conducted simultaneously over a fuse box region to form and/or remove materials that are directly over the fuse box region.
    Type: Application
    Filed: May 17, 2004
    Publication date: November 17, 2005
    Inventors: Werner Juengling, Steven McDonald, Kunal Parekh
  • Publication number: 20050218474
    Abstract: The present invention relates to a laser fuse. The laser fuse comprises an element comprising a heat conductive material. The fuse also includes an absorption element comprising a material with an adjustable capacity for heat or light absorption that overlays the heat conductive element. The fuse also includes an outer insulating element that overlays and encloses the heat conductive element and the absorption element.
    Type: Application
    Filed: May 31, 2005
    Publication date: October 6, 2005
    Inventors: Mark Fischer, Zhiping Yin, Thomas Glass, Kunal Parekh, Gurtej Sandhu
  • Publication number: 20050221540
    Abstract: The present invention relates to a laser fuse. The laser fuse comprises an element comprising a heat conductive material. The fuse also includes an absorption element comprising a material with an adjustable capacity for heat or light absorption that overlays the heat conductive element. The fuse also includes an outer insulating element that overlays and encloses the heat conductive element and the absorption element.
    Type: Application
    Filed: May 31, 2005
    Publication date: October 6, 2005
    Inventors: Mark Fischer, Zhiping Yin, Thomas Glass, Kunal Parekh, Gurtej Sandhu
  • Publication number: 20050207215
    Abstract: The invention includes methods of forming memory circuitry. In one implementation, a semiconductor substrate includes a pair of word lines having a bit node received therebetween. A bit node contact opening is formed within insulative material over the bit node. Sacrificial plugging material is formed within the bit node contact opening between the pair of word lines. Sacrificial plugging material is removed from the bit node contact opening between the pair of word lines, and it is replaced with conductive material that is in electrical connection with the bit node. Thereafter, the conductive material is formed into a bit line.
    Type: Application
    Filed: May 23, 2005
    Publication date: September 22, 2005
    Inventors: Kunal Parekh, Byron Burgess
  • Publication number: 20050181567
    Abstract: A double blanket ion implant method for forming diffulsion regions in memory array devices, such as a MOSFET access device is disclosed. The method provides a semiconductor substrate with a gate structure formed on its surface Next, a first pair of diffulsion regions are formed in a region adjacent to the channel region by a first blanket ion implantation process. The first blanket ion implantation process has a first energy level and dose. The device is subjected to oxidizing conditions, which form oxidized sidewalls on the gate structure. A second blanket ion implantation process is conducted at the same location as the first ion implantation process adding additional dopant to the diffusion regions. The second blanket ion implantation process has a second energy level and dose. The resultant diffusion regions provide the device with improved static refresh performance over prior art devices.
    Type: Application
    Filed: March 31, 2005
    Publication date: August 18, 2005
    Inventors: Mark Fischer, Charles Dennison, Fawad Ahmed, Richard Lane, John Zahurak, Kunal Parekh
  • Publication number: 20050173745
    Abstract: The invention encompasses DRAM constructions, capacitor constructions, integrated circuitry, and methods of forming DRAM constructions, integrated circuitry and capacitor constructions. The invention encompasses a method of forming a capacitor wherein: a) a first layer is formed; b) a semiconductive material masking layer is formed over the first layer; c) an opening is etched through the masking layer and first layer to a node; d) a storage node layer is formed within the opening and in electrical connection with the masking layer; e) a capacitor storage node is formed from the masking layer and the storage node layer; and f) a capacitor dielectric layer and outer capacitor plate are formed operatively proximate the capacitor storage node.
    Type: Application
    Filed: March 7, 2005
    Publication date: August 11, 2005
    Inventors: Kunal Parekh, John Zahurak
  • Publication number: 20050162963
    Abstract: A method and apparatus is provided for performing a redundancy programming. The system of the present invention includes a device testing unit for performing a memory test. The system also includes a memory device operatively coupled to the device testing unit. The memory device includes an access transistor that includes a charge trapping area. A threshold voltage of the access transistor is modified upon trapping of charges in the charge trapping unit. The memory device also includes a memory element and a fuse associated with the memory element. The fuse is capable of entering an alternative state in response to modifying the threshold voltage of the access transistor. The state of the fuse may be used to program or de-program the memory element.
    Type: Application
    Filed: January 26, 2004
    Publication date: July 28, 2005
    Inventor: Kunal Parekh
  • Publication number: 20050151179
    Abstract: A semiconductor device has a diffusion barrier formed between a doped glass layer and surface structures formed on a substrate. The diffusion barrier includes alumina and optionally a nitride, and has a layer thickness satisfying the high aspect ratio of the gaps between the surface structures, while adequately preventing dopants in doped glass layer from diffusing out of the doped glass layer to the surface structures and the substrate. Further, heavy water can be used during the formation of the alumina so that deuterium may be accomplished near the interface of surface structures and the substrate to enhance the performance of the device.
    Type: Application
    Filed: December 3, 2004
    Publication date: July 14, 2005
    Inventors: Kunal Parekh, Gurtej Sandhu
  • Patent number: 6885542
    Abstract: A capacitor is formed with a substantially concave shape and having optional folded or convoluted surfaces. The concave shape optimizes surface area within a small volume and thereby enables the capacitor to hold a significant charge so as to assist in increased miniaturization efforts in the microelectronic field. The capacitor is fabricated in microelectronic fashion consistent with a dense DRAM array. Methods of fabrication include stack building with storage nodes that extend above a semiconductor substrate surface.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: April 26, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Zhiqiang Wu, Kunal Parekh, Li Li
  • Publication number: 20050030697
    Abstract: A capacitor is formed with a substantially concave shape and having optional folded or convoluted surfaces. The concave shape optimizes surface area within a small volume and thereby enables the capacitor to hold a significant charge so as to assist in increased miniaturization efforts in the microelectronic field. The capacitor is fabricated in microelectronic fashion consistent with a dense DRAM array. Methods of fabrication include stack building with storage nodes that extend above a semiconductor substrate surface.
    Type: Application
    Filed: September 2, 2004
    Publication date: February 10, 2005
    Inventors: Zhiqiang Wu, Kunal Parekh, Li Li
  • Publication number: 20050032314
    Abstract: A semiconductor device has a diffusion barrier formed between a doped glass layer and surface structures formed on a substrate. The diffusion barrier includes alumina and optionally a nitride, and has a layer thickness satisfying the high aspect ratio of the gaps between the surface structures, while adequately preventing dopants in doped glass layer from diffusing out of the doped glass layer to the surface structures and the substrate. Further, heavy water can be used during the formation of the alumina so that deuterium may be accomplished near the interface of surface structures and the substrate to enhance the performance of the device.
    Type: Application
    Filed: August 31, 2004
    Publication date: February 10, 2005
    Inventors: Kunal Parekh, Gurtej Sandhu