Patents by Inventor Kunliang Zhang

Kunliang Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7275304
    Abstract: A hard bias (HB) structure for biasing a free layer in a MR sensor within a magnetic read head is comprised of a main biasing layer with a large negative magnetostriction (?S) value. Compressive stress in the device after lapping induces a strong in-plane anisotropy that effectively provides a longitudinal bias to stabilize the sensor. The main biasing layer is formed between two FM layers, and at least one AFM layer is disposed above the upper FM layer or below the lower FM layer. Additionally, there may be a Ta/Ni or Ta/NiFe seed layer as the bottom layer in the HB structure. Compared with a conventional abutted junction exchange bias design, the HB structure described herein results in higher output amplitude under similar asymmetry sigma and significantly decreases sidelobe occurrence. Furthermore, smaller MRWu with a similar track width is achieved since the main biasing layer acts as a side shield.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: October 2, 2007
    Assignee: Headway Technologies, Inc.
    Inventors: Masanori Sakai, Kunliang Zhang, Kenichi Takano, Chyu-Jiuh Torng, Yunfei Li, Po-Kang Wang
  • Publication number: 20070188936
    Abstract: Concerns about inadequate electromigration robustness in CCP CPP GMR devices have been overcome by adding magnesium to the current confining structures that are presently in use. In one embodiment the alumina layer, in which the current carrying copper regions are embedded, is fully replaced by a magnesia layer. In other embodiments, alumina is still used but a layer of magnesium is included within the structure before it is subjected to ion assisted oxidation.
    Type: Application
    Filed: February 13, 2006
    Publication date: August 16, 2007
    Inventors: Kunliang Zhang, Daniel Abels, Min Li, Yu-Hsia Chen
  • Publication number: 20070146928
    Abstract: Improved magnetic devices have been fabricated by replacing the conventional seed layer (typically Ta) with a bilayer of Ru on Ta. Although both Ru and Ta layers are ultra thin (between 5 and 20 Angstroms), good exchange bias between the seed and the AFM layer (IrMn about 70 Angstroms thick) is retained. This arrangement facilitates minimum shield-to-shield spacing and gives excellent performance in CPP, CCP-CPP, or TMR configurations.
    Type: Application
    Filed: December 23, 2005
    Publication date: June 28, 2007
    Inventors: Kunliang Zhang, Hui-Chuan Wang, Tong Zhao, Yu-Hsia Chen, Min Li, Cherng-Chyi Han
  • Publication number: 20070111332
    Abstract: A high performance TMR sensor is fabricated by incorporating a tunnel barrier having a Mg/MgO/Mg configuration. The 4 to 14 Angstroms thick lower Mg layer and 2 to 8 Angstroms thick upper Mg layer are deposited by a DC sputtering method while the MgO layer is formed by a NOX process involving oxygen pressure from 0.1 mTorr to 1 Torr for 15 to 300 seconds. NOX time and pressure may be varied to achieve a MR ratio of at least 34% and a RA value of 2.1 ohm-um2. The NOX process provides a more uniform MgO layer than sputtering methods. The second Mg layer is employed to prevent oxidation of an adjacent ferromagnetic layer. In a bottom spin valve configuration, a Ta/Ru seed layer, IrMn AFM layer, CoFe/Ru/CoFeB pinned layer, Mg/MgO/Mg barrier, CoFe/NiFe free layer, and a cap layer are sequentially formed on a bottom shield in a read head.
    Type: Application
    Filed: November 16, 2005
    Publication date: May 17, 2007
    Inventors: Tong Zhao, Kunliang Zhang, Hui-Chuan Wang, Yu-Hsia Chen, Min Li
  • Publication number: 20070070556
    Abstract: A CPP-GMR spin valve having a pinned layer with an AP2/coupling/AP1 configuration is disclosed wherein the AP2 portion is a FCC-like trilayer having a composition represented by CoZFe(100-Z)/Fe(100-X)TaX/CoZFe(100-Z) or CoZFe(100-Z)/FeYCo(100-Y)/CoZFe(100-Z) where x is 3 to 30 atomic %, y is 40 to 100 atomic %, and z is 75 to 100 atomic %. Preferably, z is 90 to provide a face centered cubic structure that minimizes electromigration. Optionally, the middle layer is comprised of an Fe rich alloy such as FeCr, FeV, FeW, FeZr, FeNb, FeHf, or FeMo. EM performance is improved significantly compared to a spin valve with a conventional AP2 Co50Fe5 or Co75Fe25 single layer. The MR ratio of the spin valve is also increased and the RA is maintained at an acceptable level. The coupling layer is preferably Ru and the AP1 layer may be comprised of a lamination of CoFe and Cu layers as in [CoFe/Cu]2/CoFe.
    Type: Application
    Filed: September 23, 2005
    Publication date: March 29, 2007
    Inventors: Kunliang Zhang, Dan Abels, Min Li, Chyu-Jiuh Torng, Chen-Jung Chien, Yu-Hsia Chen
  • Publication number: 20070047159
    Abstract: A TMR sensor, a CPP GMR sensor and a CCP CPP GMR sensor all include a tri-layered free layer that is of the form CoFe/CoFeB/NiFe, where the atom percentage of Fe can vary between 5% and 90% and the atom percentage of B can vary between 5% and 30%. The sensors also include SyAP pinned layers which, in the case of the GMR sensors include at least one layer of CoFe laminated onto a thin layer of Cu. In the CCP CPP sensor, a layer of oxidized aluminum containing segregated particles of copper is formed between the spacer layer and the free layer. All three configurations exhibit extremely good values of coercivity, areal resistance, GMR ratio and magnetostriction.
    Type: Application
    Filed: August 23, 2005
    Publication date: March 1, 2007
    Inventors: Tong Zhao, Kunliang Zhang, Hui-Chuan Wang, Yu-Hsia Chen, Min Li
  • Patent number: 7180716
    Abstract: A method for fabricating a stitched CPP synthetic spin-valve sensor with in-stack stabilization of its free layer. The method can also be applied to the formation of a stitched tunneling magnetoresistive sensor. The free layer is strongly stabilized by magnetostatic coupling through the use of a longitudinal biasing formation that includes a ferromagnetic layer, denoted LBL, within the pillar portion of the sensor and a synthetic exchange coupled tri-layer within the stitched portion of the sensor. The tri-layer consists of two ferromagnetic layers, FM1 and FM2 separated by a coupling layer and magnetized longitudinally in antiparallel directions. A criterion for the magnetic thicknesses of the layers: [t(LBL)+t(FM1)]/t(FM2)=70/90 angstroms of CoFe insures a strong exchange coupling. The magnetization of the tri-layer is done in a low field anneal that does not disturb the previous magnetization of the ferromagnetic free layer.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: February 20, 2007
    Assignee: Headway Technologies, Inc.
    Inventors: Min Li, Youfeng Zheng, Kunliang Zhang, Simon Liao, Kochan Ju
  • Publication number: 20070014054
    Abstract: A CPP-GMR spin valve having a CoFe/NiFe composite free layer is disclosed in which Fe content of the CoFe layer ranges from 20 to 70 atomic % and Ni content in the NiFe layer varies from 85 to 100 atomic % to maintain low Hc and ?S values. A higher than normal Fe content in the CoFe layer improves the MR ratio by ?16% compared with conventional CoFe/NiFe free layers in which the Fe content in CoFe is typically <20 atomic % and the Ni content in NiFe is <85 atomic %. The CPP-GMR performance may also be optimized by incorporating a confining current path layer in the copper spacer between the pinned layer and free layer. For a pinned layer with an AP2/Ru/AP1 configuration, the spin valve performance is further improved by an AP1 layer comprised of a lamination of CoFe and Cu layers as in [CoFe/Cu]2/CoFe.
    Type: Application
    Filed: July 13, 2005
    Publication date: January 18, 2007
    Inventors: Kunliang Zhang, Min Li, Yu-Hsia Chen, Chyu-Jiuh Torng
  • Publication number: 20070015293
    Abstract: A high performance TMR element is fabricated by inserting an oxygen surfactant layer (OSL) between a pinned layer and AlOx tunnel barrier layer in a bottom spin valve configuration. The pinned layer preferably has a SyAP configuration with an outer pinned layer, a Ru coupling layer, and an inner pinned layer comprised of CoFeXBY/CoFeZ wherein x=0 to 70 atomic %, y=0 to 30 atomic %, and z=0 to 100 atomic %. The OSL is formed by treating the CoFez layer with oxygen plasma. The AlOx tunnel barrier has improved uniformity of about 2% across a 6 inch wafer and can be formed from an Al layer as thin as 5 Angstroms. As a result, the Hin value can be decreased by ? to about 32 Oe. A dR/R of 25% and a RA of 3 ohm-cm2 have been achieved for TMR read head applications.
    Type: Application
    Filed: July 14, 2005
    Publication date: January 18, 2007
    Inventors: Hui-Chuan Wang, Tong Zhao, Min Li, Kunliang Zhang
  • Patent number: 7141314
    Abstract: A current-perpendicular-to-plane (CPP) giant magnetoresistive (GMR) sensor of the synthetic spin valve type and its method of formation are disclosed, the sensor including a novel laminated free layer having ultra-thin (less than 3 angstroms thickness) laminas of Fe50 Co50 (or any iron rich alloy of the form CoxFe1?x with x between 0.25 and 0.75) interspersed with thicker layers of Co90Fe10 and Cu spacer layers to produce a free layer with good coercivity, a coefficient of magnetostriction that can be varied between positive and negative values and a high GMR ratio, due to enhancement of the bulk scattering coefficient by the laminas. The configuration of the lamina and layers in periodic groupings allow the coefficient of magnetostriction to be finely adjusted and the coercivity and GMR ratio to be optimized. The sensor performance can be further improved by including layers of Cu and Fe50Co50 in the synthetic antiferromagnetic pinned layer.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: November 28, 2006
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Rachid Sbiaa, Simon Liao, Yue Liu
  • Publication number: 20060198059
    Abstract: A hard bias (HB) structure for biasing a free layer in a MR sensor within a magnetic read head is comprised of a main biasing layer with a large negative magnetostriction (?S) value. Compressive stress in the device after lapping induces a strong in-plane anisotropy that effectively provides a longitudinal bias to stabilize the sensor. The main biasing layer is formed between two FM layers, and at least one AFM layer is disposed above the upper FM layer or below the lower FM layer. Additionally, there may be a Ta/Ni or Ta/NiFe seed layer as the bottom layer in the HB structure. Compared with a conventional abutted junction exchange bias design, the HB structure described herein results in higher output amplitude under similar asymmetry sigma and significantly decreases sidelobe occurrence. Furthermore, smaller MRWu with a similar track width is achieved since the main biasing layer acts as a side shield.
    Type: Application
    Filed: March 4, 2005
    Publication date: September 7, 2006
    Inventors: Masanori Sakai, Kunliang Zhang, Kenichi Takano, Chyu-Jiuh Torng, Yunfei Li, Po-Kang Wang
  • Publication number: 20060196039
    Abstract: A hard bias (HB) structure for biasing a free layer in a MR sensor within a magnetic read head is comprised of a main biasing layer with a large negative magnetostriction (?S) value. Compressive stress in the device after lapping induces a strong in-plane anisotropy that effectively provides a longitudinal bias to stabilize the sensor. The main biasing layer is formed between two FM layers, and at least one AFM layer is disposed above the upper FM layer or below the lower FM layer. Additionally, there may be a Ta/Ni or Ta/NiFe seed layer as the bottom layer in the HB structure. Compared with a conventional abutted junction exchange bias design, the HB structure described herein results in higher output amplitude under similar asymmetry sigma and significantly decreases sidelobe occurrence. Furthermore, smaller MRWu with a similar track width is achieved since the main biasing layer acts as a side shield.
    Type: Application
    Filed: March 4, 2005
    Publication date: September 7, 2006
    Inventors: Masanori Sakai, Kunliang Zhang, Kenichi Takano, Chyu-Jiuh Torng, Yunfei Li, Po-Kang Wang
  • Publication number: 20060165881
    Abstract: The effectiveness of an IrMn pinning layer in a CPP GMR device at high switching fields has been improved by replacing the conventional single layer seed by a layer of tantalum and either ruthenium or copper. The tantalum serves to cancel out the crystallographic influence of underlying layers while the ruthenium or copper provide a suitable base on which to grow the IrMn layer.
    Type: Application
    Filed: January 26, 2005
    Publication date: July 27, 2006
    Inventors: Min Li, Kunliang Zhang, Chyu-Jiuh Torng, Yu-Hsia Chen
  • Publication number: 20060164765
    Abstract: The effectiveness of an IrMn pinning layer in a CPP GMR device at high switching fields has been improved by replacing the conventional single layer seed by a layer of tantalum and either ruthenium or copper. The tantalum serves to cancel out the crystallographic influence of underlying layers while the ruthenium or copper provide a suitable base on which to grow the IrMn layer.
    Type: Application
    Filed: January 26, 2005
    Publication date: July 27, 2006
    Inventors: Min Li, Kunliang Zhang, Chyu-Jiuh Torng, Yu-Hsia Chen
  • Patent number: 7075758
    Abstract: Increases in the AP1 and AP2 thickness cause the free layer to be off-center in a CPP magnetic read head. This problem has been overcome by inserting supplementary magnetic shields within the spin valve, located as close as possible to the stack. These supplementary shields enable the read gap width to be reduced by about 430 ? and the free layer to shift back towards the center by about 30 ?.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: July 11, 2006
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Kochan Ju, Min Li, Youfeng Zheng, Simon Liao, Yue Liu
  • Publication number: 20060146452
    Abstract: Improved performance of CIP GMR devices has been achieved by modifying the composition of AP2. Said modification comprises the addition of chromium or vanadium to AP2, while still retaining its ferromagnetic properties. Examples of alloys suitable for use in AP2 include FeCr, NiFeCr, NiCr, CoCr, CoFeCr, and CoFeV. The ruthenium layer normally used to effect antiferromagnetic coupling between AP1 and AP2 is retained.
    Type: Application
    Filed: January 4, 2005
    Publication date: July 6, 2006
    Inventors: Min Li, Simon Liao, Kunliang Zhang, Rachid Sbiaa
  • Patent number: 7068478
    Abstract: Replacing ruthenium with rhodium as the AFM coupling layer in a synthetically pinned CPP GMR structure enables the AP1/AP2 thicknesses to be increased. This results in improved stability and allows the free layer and AFM layer thicknesses to be decreased, leading to an overall improvement in the device performance. Another key advantage of this structure is that the magnetic annealing requirements (to establish antiparallelism between AP1 and AP2) can be significantly relaxed.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: June 27, 2006
    Assignee: Headway Technologies, Inc.
    Inventors: Min Li, Kunliang Zhang, Rachid Sbiaa, Cheng T. Horng, Simon Liao, Kochan Ju
  • Publication number: 20060132989
    Abstract: A hard bias structure for biasing a free layer in a MR element within a magnetic read head is comprised of a soft magnetic underlayer such as NiFe and a hard bias layer comprised of Co78.6Cr5.2Pt16.2 or Co65Cr15Pt20 that are rigidly exchange coupled to ensure a well aligned longitudinal biasing direction with minimal dispersions. The hard bias structure is formed on a BCC seed layer such as CrTi to improve lattice matching. The hard bias structure may be laminated in which each of the underlayers and hard bias layers has a thickness that is adjusted to optimize the total HC, Mrt, and S values. The present invention encompasses CIP and CPP spin values, MTJ devices, and multi-layer sensors. A larger process window for fabricating the hard bias structure is realized and lower asymmetry output and NBLW reject rates during a read operation are achieved.
    Type: Application
    Filed: December 17, 2004
    Publication date: June 22, 2006
    Inventors: Kunliang Zhang, Mao-Min Chen, Chyu-Jiuh Torng, Min Li, Chen-Jung Chien
  • Publication number: 20060132988
    Abstract: A hard bias structure for biasing a free layer in a MR element within a magnetic read head is comprised of a soft magnetic underlayer such as NiFe and a hard bias layer comprised of Co78.6Cr5.2Pt16.2 or Co65Cr15Pt20 that are rigidly exchange coupled to ensure a well aligned longitudinal biasing direction with minimal dispersions. The hard bias structure is formed on a BCC seed layer such as CrTi to improve lattice matching. The hard bias structure may be laminated in which each of the underlayers and hard bias layers has a thickness that is adjusted to optimize the total HC, Mrt, and S values. The present invention encompasses CIP and CPP spin values, MTJ devices, and multi-layer sensors. A larger process window for fabricating the hard bias structure is realized and lower asymmetry output and NBLW reject rates during a read operation are achieved.
    Type: Application
    Filed: December 17, 2004
    Publication date: June 22, 2006
    Inventors: Kunliang Zhang, Mao-Min Chen, Chyu-Jiuh Torng, Min Li, Chen-Jung Chien
  • Publication number: 20060114621
    Abstract: The conventional free layer in a CPP GMR read head has been replaced by a tri-layer laminate comprising Co rich CoFe, moderately Fe rich NiFe, and heavily Fe rich NiFe. The result is an improved device that has a higher MR ratio than prior art devices, while still maintaining free layer softness and acceptable magnetostriction. A process for manufacturing the device is also described.
    Type: Application
    Filed: November 30, 2004
    Publication date: June 1, 2006
    Inventors: Hui-Chuan Wang, Min Li, Tong Zhao, Kunliang Zhang, Chyu-Jiuh Torng