Patents by Inventor Kunliang Zhang

Kunliang Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7773341
    Abstract: A laminated main pole layer is disclosed in which a non-AFC scheme is used to break the magnetic coupling between adjacent high moment layers and reduce remanence in a hard axis direction while maintaining a high magnetic moment and achieving low values for Hch, Hce, and Hk. An amorphous material layer with a thickness of 3 to 20 Angstroms and made of an oxide, nitride, or oxynitride of one or more of Hf, Zr, Ta, Al, Mg, Zn, or Si is inserted between adjacent high moment stacks. The laminated structure also includes an alignment layer below each high moment layer within each stack. In one embodiment, a Ru coupling layer is inserted between two high moment layers in each stack to introduce an AFC scheme. An uppermost Ru layer is used as a CMP stop layer. A post annealing process may be employed to further reduce the anisotropy field (Hk).
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: August 10, 2010
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Zheng, Min Li, Chen-Jung Chien, Cherng-Chyi Han
  • Publication number: 20100177449
    Abstract: A composite free layer having a FL1/insertion/FL2 configuration is disclosed for achieving high dR/R, low RA, and low ? in TMR or GMR sensors. Ferromagnetic FL1 and FL2 layers have (+) ? and (?) ? values, respectively. FL1 may be CoFe, CoFeB, or alloys thereof with Ni, Ta, Mn, Ti, W, Zr, Hf, Tb, or Nb. FL2 may be CoFe, NiFe, or alloys thereof with Ni, Ta, Mn, Ti, W, Zr, Hf, Tb, Nb, or B. The thin insertion layer includes at least one magnetic element such as Co, Fe, and Ni, and at least one non-magnetic element selected from Ta, Ti, W, Zr, Hf, Nb, Mo, V, Cr, or B. In a TMR stack with a MgO tunnel barrier, dR/R>60%, ?˜1×10?6, and RA=1.2 ohm-um2 when FL1 is CoFe/CoFeB/CoFe, FL2 is CoFe/NiFe/CoFe, and the insertion layer is CoTa or CoFeBTa.
    Type: Application
    Filed: January 14, 2009
    Publication date: July 15, 2010
    Inventors: Tong Zhao, Hui-Chuan Wang, Min Li, Kunliang Zhang
  • Publication number: 20100172053
    Abstract: A hard bias structure for biasing a free layer in a MR element within a read head is comprised of a composite hard bias layer having a Co78.6Cr5.2Pt16.2/Co65Cr15Pt20 configuration. The upper Co65Cr15Pt20 layer has a larger Hc value and a thickness about 2 to 10 times greater than that of the Co78.6Cr5.2Pt16.2 layer. The hard bias structure may also include a BCC underlayer such as FeCoMo which enhances the magnetic moment of the hard bias structure. Optionally, the thickness of the Co78.6Cr5.2Pt16.2 layer is zero and the Co65Cr15Pt20 layer is formed on the BCC underlayer. The present invention also encompasses a laminated hard bias structure. The Mrt value for the hard bias structure may be optimized by adjusting the thicknesses of the BCC underlayer and CoCrPt layers. As a result, a larger process window is realized and lower asymmetry output during a read operation is achieved.
    Type: Application
    Filed: March 5, 2010
    Publication date: July 8, 2010
    Inventors: Kunliang Zhang, Yun-Fei Li, Chyu-Jiuh Torng, Chen-Jung Chien
  • Publication number: 20100128377
    Abstract: We describe a system for electric field assisted magnetic recording where a recordable magnetic medium includes a magnetic recording layer of high coercivity and vertical magnetic anisotropy that is adjacent to an electrostrictive layer which can be placed in a state of stress by a electric field or which is already pre-stressed and which pre-stress can be turned into strain by an electric field. When the magnetic medium is acted on simultaneously by a magnetic writing field and an electric field, the stress in the elctrostrictive layer is transferred to a magnetostrictive layer which is the magnetic recording layer by itself or is coupled to the magnetic recording layer, whereupon the magnetic recording layer is made more isotropic and more easily written upon. Residual stresses in the electrostrictive layer can then be removed by an additional electric field of opposite sign to the stress-producing field.
    Type: Application
    Filed: November 25, 2008
    Publication date: May 27, 2010
    Inventors: Yuchen Zhou, Kowang Liu, Kunliang Zhang, Erhard Schreck
  • Publication number: 20100123208
    Abstract: A magneto-resistive device having a large output signal as well as a high signal-to-noise ratio is described along with a process for forming it. This improved performance was accomplished by expanding the free layer into a multilayer laminate comprising at least three ferromagnetic layers separated from one another by antiparallel coupling layers. The ferromagnetic layer closest to the transition layer must include CoFeB while the furthermost layer is required to have low Hc as well as a low and negative lambda value. One possibility for the central ferromagnetic layer is NiFe but this is not mandatory.
    Type: Application
    Filed: November 19, 2008
    Publication date: May 20, 2010
    Inventors: Tong Zhao, Hui-Chuan Wang, Yu-Chen Zhou, Min Li, Kunliang Zhang
  • Publication number: 20100119874
    Abstract: A laminated high moment film with a non-AFC configuration is disclosed that can serve as a seed layer for a main pole layer or as the main pole layer itself in a PMR writer. The laminated film includes a plurality of (B/M) stacks where B is an alignment layer and M is a high moment layer. Adjacent (B/M) stacks are separated by an amorphous layer that breaks the magnetic coupling between adjacent high moment layers and reduces remanence in a hard axis direction while maintaining a high magnetic moment and achieving low values for Hch, Hce, and Hk. The amorphous material layer may be made of an oxide, nitride, or oxynitride of one or more of Hf, Zr, Ta, Al, Mg, Zn, Ti, Cr, Nb, or Si, or may be Hf, Zr, Ta, Nb, CoFeB, CoB, FeB, or CoZrNb. Alignment layers are FCC soft ferromagnetic materials or non-magnetic FCC materials.
    Type: Application
    Filed: November 13, 2008
    Publication date: May 13, 2010
    Inventors: Kunliang Zhang, Min Li, Min Zheng, Fenglin Liu, Xiaomin Liu
  • Publication number: 20100091412
    Abstract: A method for manufacturing a magneto-resistance effect element is provided. The magneto-resistance effect element includes a first magnetic layer including a ferromagnetic material, a second magnetic layer including a ferromagnetic material and a spacer layer provided between the first magnetic layer and the second magnetic layer, the spacer layer having an insulating layer and a conductive portion penetrating through the insulating layer. The method includes: forming a film to be a base material of the spacer layer; performing a first treatment using a gas including at least one of oxygen molecules, oxygen atoms, oxygen ions, oxygen plasma and oxygen radicals on the film; and performing a second treatment using a gas including at least one of helium ions, helium plasma, helium radicals, neon ions, neon plasma and neon radicals on the film submitted to the first treatment.
    Type: Application
    Filed: September 25, 2009
    Publication date: April 15, 2010
    Applicants: KABUSHIKI KAISHA TOSHIBA, TDK CORPORATION
    Inventors: Hiromi Yuasa, Hideaki Fukuzawa, Yoshihiko Fuji, Shuichi Murakami, Michiko Hara, Kunliang Zhang, Min Li, Erhard Schreck
  • Publication number: 20100091415
    Abstract: A method for manufacturing a magneto-resistance effect element is provided. The magneto-resistance effect element includes a first magnetic layer including a ferromagnetic material, a second magnetic layer including a ferromagnetic material and a spacer layer provided between the first magnetic layer and the second magnetic layer, the spacer layer having an insulating layer and a conductive portion penetrating through the insulating layer. The method includes: forming a film to be a base material of the spacer layer; performing a first treatment using a gas including at least one of oxygen molecules, oxygen atoms, oxygen ions, oxygen plasma and oxygen radicals on the film; and performing a second treatment using a gas including at least one of nitrogen ions, nitrogen atoms, nitrogen plasma, and nitrogen radicals on the film submitted to the first treatment.
    Type: Application
    Filed: September 25, 2009
    Publication date: April 15, 2010
    Applicants: KABUSHIKI KAISHA TOSHIBA, TDK CORPORATION
    Inventors: Hiromi Yuasa, Hideaki Fukuzawa, Yoshihiko Fuji, Shuichi Murakami, Michiko Hara, Kunliang Zhang, Min Li, Erhard Schreck
  • Publication number: 20100091414
    Abstract: A method for manufacturing a magneto-resistance effect element is provided. The magneto-resistance effect element includes a first magnetic layer including a ferromagnetic material, a second magnetic layer including a ferromagnetic material and a spacer layer provided between the first magnetic layer and the second magnetic layer, the spacer layer having an insulating layer and a conductive portion penetrating through the insulating layer. The method includes: forming a film to be a base material of the spacer layer; performing a first treatment using a gas including at least one of oxygen molecules, oxygen atoms, oxygen ions, oxygen plasma and oxygen radicals on the film; and performing a second treatment using a gas including at least one of krypton ions, krypton plasma, krypton radicals, xenon ions, xenon plasma and xenon radicals on the film submitted to the first treatment.
    Type: Application
    Filed: September 25, 2009
    Publication date: April 15, 2010
    Applicants: KABUSHIKI KAISHA TOSHIBA, TDK CORPORATION
    Inventors: Hiromi Yuasa, Hideaki Fukuzawa, Yoshihiko Fuji, Shuichi Murakami, Michiko Hara, Kunliang Zhang, Min Li, Erhard Schreck
  • Publication number: 20100092803
    Abstract: A method for manufacturing a magneto-resistance effect element is provided. The magneto-resistance effect element includes a first magnetic layer including a ferromagnetic material, a second magnetic layer including a ferromagnetic material and a spacer layer provided between the first magnetic layer and the second magnetic layer, the spacer layer having an insulating layer and a conductive portion penetrating through the insulating layer. The method includes: forming a film to be a base material of the spacer layer; performing a first treatment using a gas including at least one of oxygen molecules, oxygen atoms, oxygen ions, oxygen plasma and oxygen radicals on the film; and performing a second treatment using a gas including at least one of hydrogen molecules, hydrogen atoms, hydrogen ions, hydrogen plasma, hydrogen radicals, deuterium molecules, deuterium atoms, deuterium ions, deuterium plasma and deuterium radicals on the film submitted to the first treatment.
    Type: Application
    Filed: September 25, 2009
    Publication date: April 15, 2010
    Applicants: KABUSHIKI KAISHA TOSHIBA, TDK CORPORATION
    Inventors: Hiromi Yuasa, Hideaki Fukuzawa, Yoshihiko Fuji, Shuichi Murakami, Michiko Hara, Kunliang Zhang, Min Li, Erhard Schreck
  • Publication number: 20100085666
    Abstract: A magnetic sensor, formed from a pair of magnetically free layers located on opposing sides of a non-magnetic layer, and method for its manufacture, are described. Biasing these free layers to be roughly orthogonal to one another causes them to be magnetostatically coupled in a weak antiferromagnetic mode. This enables the low frequency noise spectra of the two free layers to cancel one another.
    Type: Application
    Filed: October 8, 2008
    Publication date: April 8, 2010
    Inventors: Yuchen Zhou, Kunliang Zhang, Yu-Hsai Chen, Tong Zhao, Moris Dovek
  • Patent number: 7688555
    Abstract: A hard bias structure for biasing a free layer in a MR element within a read head is comprised of a composite hard bias layer having a Co78.6Cr5.2Pt16.2/Co65Cr15Pt20 configuration. The upper Co65Cr15Pt20 layer has a larger Hc value and a thickness about 2 to 10 times greater than that of the Co78.6Cr5.2Pt16.2 layer. The hard bias structure may also include a BCC underlayer such as FeCoMo which enhances the magnetic moment of the hard bias structure. Optionally, the thickness of the Co78.6Cr5.2Pt16.2 layer is zero and the Co65Cr15Pt20 layer is formed on the BCC underlayer. The present invention also encompasses a laminated hard bias structure. The Mrt value for the hard bias structure may be optimized by adjusting the thicknesses of the BCC underlayer and CoCrPt layers. As a result, a larger process window is realized and lower asymmetry output during a read operation is achieved.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: March 30, 2010
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Yun-Fei Li, Chyu-Jiuh Torng, Chen-Jung Chien
  • Publication number: 20100073827
    Abstract: A TMR sensor that includes a free layer having at least one B-containing (BC) layer made of CoFeB, CoFeBM, CoB, COBM, or CoBLM, and a plurality of non-B containing (NBC) layers made of CoFe, CoFeM, or CoFeLM is disclosed where L and M are one of Ni, Ta, Ti, W, Zr, Hf, Tb, or Nb. One embodiment is represented by (NBC/BC)n where n?2. A second embodiment is represented by (NBC/BC)n/NBC where n?1. In every embodiment, a NBC layer contacts the tunnel barrier and NBC layers each with a thickness from 2 to 8 Angstroms are formed in alternating fashion with one or more BC layers each 10 to 80 Angstroms thick. Total free layer thickness is<100 Angstroms. The free layer configuration described herein enables a significant noise reduction (SNR enhancement) while realizing a high TMR ratio, low magnetostriction, low RA, and low Hc values.
    Type: Application
    Filed: September 22, 2008
    Publication date: March 25, 2010
    Inventors: Tong Zhao, Hui-Chuan Wang, Yu-Chen Zhou, Min Li, Kunliang Zhang
  • Publication number: 20100073828
    Abstract: A TMR sensor with a free layer having a FL1/FL2/FL3 configuration is disclosed in which FL1 is FeCo or a FeCo alloy with a thickness between 2 and 15 Angstroms. The FL2 layer is made of CoFeB or a CoFeB alloy having a thickness from 2 to 10 Angstroms. The FL3 layer is from 10 to 100 Angstroms thick and has a negative ? to offset the positive ? from FL1 and FL2 layers and is comprised of CoB or a CoBQ alloy where Q is one of Ni, Mn, Tb, W, Hf, Zr, Nb, and Si. Alternatively, the FL3 layer may be a composite such as CoB/CoFe, (CoB/CoFe)n where n is ?2 or (CoB/CoFe)m/CoB where m is ?1. The free layer described herein affords a high TMR ratio above 60% while achieving low values for ? (<5×10?6), RA (1.5 ohm/?m2), and Hc (<6 Oe).
    Type: Application
    Filed: September 22, 2008
    Publication date: March 25, 2010
    Inventors: Hui-Chuan Wang, Tong Zhao, Min Li, Kunliang Zhang
  • Patent number: 7672088
    Abstract: A spin valve structure is disclosed in which an AP1 layer and/or free layer are made of a laminated Heusler alloy having Al or FeCo insertion layers. The ordering temperature of a Heusler alloy such as Co2MnSi is thereby lowered from about 350° C. to 280° C. which becomes practical for spintronics device applications. The insertion layer is 0.5 to 5 Angstroms thick and may also be Sn, Ge, Ga, Sb, or Cr. The AP1 layer or free layer can contain one or two additional FeCo layers to give a configuration represented by FeCo/[HA/IL]nHA, [HA/IL]nHA/FeCo, or FeCo/[HA/IL]nHA/FeCo where n is an integer ?1, HA is a Heusler alloy layer, and IL is an insertion layer. Optionally, a Heusler alloy insertion scheme is possible by doping Al or FeCo in the HA layer. For example, Co2MnSi may be co-sputtered with an Al or FeCo target or with a Co2MnAl or Co2FeSi target.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: March 2, 2010
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Yu-Hsia Chen, Hui-Chuan Wang, Tong Zhao
  • Publication number: 20100037453
    Abstract: Concerns about inadequate electromigration robustness in CCP CPP GMR devices have been overcome by adding magnesium to the current confining structures that are presently in use. In one embodiment the alumina layer, in which the current carrying copper regions are embedded, is fully replaced by a magnesia layer. In other embodiments, alumina is still used but a layer of magnesium is included within the structure before it is subjected to ion assisted oxidation.
    Type: Application
    Filed: October 20, 2009
    Publication date: February 18, 2010
    Inventors: Kunliang Zhang, Daniel Gabels, Min Li, Yu-Hsia Chen
  • Publication number: 20100019333
    Abstract: A high performance TMR sensor is fabricated by employing a composite inner pinned (AP1) layer in an AP2/Ru/AP1 pinned layer configuration. In one embodiment, there is a 10 to 80 Angstrom thick lower CoFeB or CoFeB alloy layer on the Ru coupling layer, a and 5 to 50 Angstrom thick Fe or Fe alloy layer on the CoFeB or CoFeB alloy, and a 5 to 30 Angstrom thick Co or Co rich alloy layer formed on the Fe or Fe alloy. A MR ratio of about 48% with a RA of <2 ohm-um2 is achieved when a CoFe AP2 layer, MgO (NOX) tunnel barrier, and CoFe/NiFe free layer are used in the TMR stack. Improved RA uniformity and less head noise are observed. Optionally, a CoFe layer may be inserted between the coupling layer and CoFeB or CoFeB alloy layer to improve pinning strength and enhance crystallization.
    Type: Application
    Filed: September 23, 2009
    Publication date: January 28, 2010
    Inventors: Tong Zhao, Hui-Chuan Wang, Kunliang Zhang, Yu-Hsia Chen, Min Li
  • Patent number: 7646568
    Abstract: Improved magnetic devices have been fabricated by replacing the conventional seed layer (typically Ta) with a bilayer of Ru on Ta. Although both Ru and Ta layers are ultra thin (between 5 and 20 Angstroms), good exchange bias between the seed and the AFM layer (IrMn about 70 Angstroms thick) is retained. This arrangement facilitates minimum shield-to-shield spacing and gives excellent performance in CPP, CCP-CPP, or TMR configurations.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: January 12, 2010
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Hui-Chuan Wang, Tong Zhao, Yu-Hsia Chen, Min Li, Cherng-Chyi Han
  • Publication number: 20090314632
    Abstract: A method of forming a CPP-GMR spin valve having a pinned layer with an AP2/coupling/AP1 configuration is disclosed wherein the AP2 portion is a FCC-like trilayer having a composition represented by CoZFe(100-Z)/Fe(100-X)TaX/CoZFe(100-Z) or CoZFe(100-Z)/FeYCo(100-Y)/CoZFe(100-Z) where x is 3 to 30 atomic %, y is 40 to 100 atomic %, and z is 75 to 100 atomic %. Preferably, z is 90 to provide a face centered cubic structure that minimizes electromigration. Optionally, the middle layer is comprised of an Fe rich alloy such as FeCr, FeV, FeW, FeZr, FeNb, FeHf, or FeMo. EM performance is improved significantly compared to a spin valve with a conventional AP2 Co50Fe50 or Co75Fe25 single layer. MR ratio is also increased and RA is maintained at an acceptable level. The coupling layer is preferably Ru and the AP1 layer may be comprised of a lamination of CoFe and Cu layers as in [CoFe/Cu]2/CoFe.
    Type: Application
    Filed: August 25, 2009
    Publication date: December 24, 2009
    Inventors: Kunliang Zhang, Dan Abels, Min Li, Chyu-Jiuh Torng, Chen-Jung Chien, Yu-Hsia Chen
  • Patent number: 7610674
    Abstract: Concerns about inadequate electromigration robustness in CCP CPP GMR devices have been overcome by adding magnesium to the current confining structures that are presently in use. In one embodiment the alumina layer, in which the current carrying copper regions are embedded, is fully replaced by a magnesia layer. In other embodiments, alumina is still used but a layer of magnesium is included within the structure before it is subjected to ion assisted oxidation.
    Type: Grant
    Filed: February 13, 2006
    Date of Patent: November 3, 2009
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Daniel G Abels, Min Li, Yu-Hsia Chen