Patents by Inventor Kuo-Chen Wang

Kuo-Chen Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12069848
    Abstract: Methods, apparatuses, and systems related to a sense line and cell contact for a semiconductor structure are described. An example apparatus includes a first source/drain region and a second source/drain region, where the first source/drain region and the second source/drain region are separated by a channel, a gate opposing the channel, a sense line material coupled to the first source/drain region by a cell contact, where the cell contact is made from a combination of a first polysilicon material and a second polysilicon material, and a storage node coupled to the second source/drain region.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: August 20, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Kuo-Chen Wang, Terrence B. McDaniel, Russell A. Benson, Vinay Nair
  • Publication number: 20230345708
    Abstract: Methods, apparatuses, and systems related to a sense line and cell contact for a semiconductor structure are described. An example apparatus includes a first source/drain region and a second source/drain region, where the first source/drain region and the second source/drain region are separated by a channel, a gate opposing the channel, a sense line material coupled to the first source/drain region by a cell contact, where the cell contact is made from a combination of a first polysilicon material and a second polysilicon material, and a storage node coupled to the second source/drain region.
    Type: Application
    Filed: April 26, 2022
    Publication date: October 26, 2023
    Inventors: Kuo-Chen Wang, Terrence B. McDaniel, Russell A. Benson, Vinay Nair
  • Patent number: 11239240
    Abstract: A semiconductor device comprises semiconductive pillars; digit lines laterally between the semiconductive pillars; nitride caps vertically overlying the digit lines; nitride structures overlying surfaces of the nitride caps; redistribution material structures comprising upper portions overlying upper surfaces of the nitride caps and the nitride structures, and lower portions overlying upper surfaces of the semiconductive pillars; a low-K dielectric material laterally between the digit lines and the semiconductive pillars; air gaps laterally between the low-K dielectric material and the semiconductive pillars, and having upper boundaries below the upper surfaces of the nitride caps; and a nitride dielectric material laterally between the air gaps and the semiconductive pillars. Memory devices, electronic systems, and method of forming a semiconductor device are also described.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: February 1, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Arzum F. Simsek-Ege, Guangjun Yang, Kuo-Chen Wang, Mohd Kamran Akhtar, Katsumi Koge
  • Patent number: 11069561
    Abstract: An electronic device comprises a dielectric structure, interconnect structures extending into the dielectric structure and having uppermost vertical boundaries above uppermost vertical boundaries of the dielectric structure, an additional barrier material covering surfaces of the interconnect structures above the uppermost vertical boundaries of the dielectric structure, an isolation material overlying the additional barrier material, and at least one air gap laterally intervening between at least two of the interconnect structures laterally-neighboring one another. Each of the interconnect structures comprises a conductive material, and a barrier material intervening between the conductive material and the dielectric structure. The at least one air gap vertically extends from a lower portion of the isolation material, through the additional barrier material, and into the dielectric structure. Electronic systems and method of forming an electronic device are also described.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: July 20, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Toyonori Eto, Kuo-Chen Wang
  • Patent number: 11004494
    Abstract: Some embodiments include an assembly having active material structures arranged in an array having rows and columns. Each of the active material structures has a first side which includes a bit contact region, and has a second side which includes a cell contact region. Each of the bit contact regions is coupled with a first redistribution pad. Each of the cell contact regions is coupled with a second redistribution pad. The first redistribution pads are coupled with bitlines, and the second redistribution pads are coupled with programmable devices. Some embodiments include methods of forming memory arrays.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: May 11, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Kuo-Chen Wang, Martin C. Roberts, Diem Thy N. Tran, Hideki Gomi, Fredrick D. Fishburn, Srinivas Pulugurtha, Michel Koopmans, Eiji Hasunuma
  • Patent number: 10978554
    Abstract: A method of forming elevationally-elongated conductive structures of integrated circuitry comprises providing a substrate comprising a plurality of spaced elevationally-extending conductive vias. Conductive material is formed directly above and directly against the conductive vias. The conductive material has an upper surface and a first sidewall that are directly above individual of the conductive vias in a vertical cross-section. The conductive material has a second sidewall that is not directly above the individual conductive vias. Covering material is formed directly above individual of the upper surfaces and against individual of the first sidewalls directly above the individual conductive vias. The covering material comprises a composition different from that of at least some of the conductive material.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: April 13, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Kuo-Chen Wang
  • Patent number: 10886278
    Abstract: A method of forming elevationally-elongated conductive structures of integrated circuitry comprises providing a substrate comprising a plurality of spaced elevationally-extending conductive vias individually having an upper horizontal perimeter. The conductive vias individually have an upper horizontal perimeter. Masking material is formed directly above the conductive vias. An opening is formed in the masking material directly above individual of the upper horizontal perimeters of individual of the conductive vias. Individual of the masking-material openings comprise a lower horizontal perimeter that overlaps the upper horizontal perimeter of the conductive via directly there-below. Individual of the masking-material openings comprise a lower horizontal perimeter that overlaps the upper horizontal perimeter of the conductive via directly there-below.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: January 5, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Kuo-Chen Wang, Sanh D. Tang
  • Patent number: 10847518
    Abstract: A semiconductor substrate is provided. Active areas and trench isolation regions are formed. The active areas extend along a first direction. Buried word lines extending along a second direction are formed in the semiconductor substrate. Two of the buried word lines intersect with each of the active areas, separating each of the active areas into a digit line contact area and two cell contact areas. Buried digit lines extending along a third direction are formed above the buried word lines. An upper portion of the trench isolation region is removed to form an L-shaped recessed area around each of the cell contact areas. The L-shaped recessed area exposes sidewalls of the cell contact areas. An epitaxial silicon growth process is then performed to grow an epitaxial silicon layer from the exposed sidewalls and a top surface of each of the cell contact areas, thereby forming enlarged cell contact areas.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: November 24, 2020
    Assignee: Micron Technology, Inc.
    Inventor: Kuo-Chen Wang
  • Publication number: 20200357680
    Abstract: An electronic device comprises a dielectric structure, interconnect structures extending into the dielectric structure and having uppermost vertical boundaries above uppermost vertical boundaries of the dielectric structure, an additional barrier material covering surfaces of the interconnect structures above the uppermost vertical boundaries of the dielectric structure, an isolation material overlying the additional barrier material, and at least one air gap laterally intervening between at least two of the interconnect structures laterally-neighboring one another. Each of the interconnect structures comprises a conductive material, and a barrier material intervening between the conductive material and the dielectric structure. The at least one air gap vertically extends from a lower portion of the isolation material, through the additional barrier material, and into the dielectric structure. Electronic systems and method of forming an electronic device are also described.
    Type: Application
    Filed: May 10, 2019
    Publication date: November 12, 2020
    Inventors: Toyonori Eto, Kuo-Chen Wang
  • Publication number: 20200312857
    Abstract: A semiconductor device comprises semiconductive pillars; digit lines laterally between the semiconductive pillars; nitride caps vertically overlying the digit lines; nitride structures overlying surfaces of the nitride caps; redistribution material structures comprising upper portions overlying upper surfaces of the nitride caps and the nitride structures, and lower portions overlying upper surfaces of the semiconductive pillars; a low-K dielectric material laterally between the digit lines and the semiconductive pillars; air gaps laterally between the low-K dielectric material and the semiconductive pillars, and having upper boundaries below the upper surfaces of the nitride caps; and a nitride dielectric material laterally between the air gaps and the semiconductive pillars. Memory devices, electronic systems, and method of forming a semiconductor device are also described.
    Type: Application
    Filed: June 16, 2020
    Publication date: October 1, 2020
    Inventors: Arzum F. Simsek-Ege, Guangjun Yang, Kuo-Chen Wang, Mohd Kamran Akhtar, Katsumi Koge
  • Patent number: 10707215
    Abstract: A semiconductor device comprises semiconductive pillars; digit lines laterally between the semiconductive pillars; nitride caps vertically overlying the digit lines; nitride structures overlying surfaces of the nitride caps; redistribution material structures comprising upper portions overlying upper surfaces of the nitride caps and the nitride structures, and lower portions overlying upper surfaces of the semiconductive pillars; a low-K dielectric material laterally between the digit lines and the semiconductive pillars; air gaps laterally between the low-K dielectric material and the semiconductive pillars, and having upper boundaries below the upper surfaces of the nitride caps; and a nitride dielectric material laterally between the air gaps and the semiconductive pillars. Memory devices, electronic systems, and method of forming a semiconductor device are also described.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: July 7, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Arzum F. Simsek-Ege, Guangjun Yang, Kuo-Chen Wang, Mohd Kamran Akhtar, Katsumi Koge
  • Publication number: 20200066729
    Abstract: A semiconductor device comprises semiconductive pillars; digit lines laterally between the semiconductive pillars; nitride caps vertically overlying the digit lines; nitride structures overlying surfaces of the nitride caps; redistribution material structures comprising upper portions overlying upper surfaces of the nitride caps and the nitride structures, and lower portions overlying upper surfaces of the semiconductive pillars; a low-K dielectric material laterally between the digit lines and the semiconductive pillars; air gaps laterally between the low-K dielectric material and the semiconductive pillars, and having upper boundaries below the upper surfaces of the nitride caps; and a nitride dielectric material laterally between the air gaps and the semiconductive pillars. Memory devices, electronic systems, and method of forming a semiconductor device are also described.
    Type: Application
    Filed: August 22, 2018
    Publication date: February 27, 2020
    Inventors: Arzum F. Simsek-Ege, Guangjun Yang, Kuo-Chen Wang, Mohd Kamran Akhtar, Katsumi Koge
  • Patent number: 10566332
    Abstract: A semiconductor memory device includes a semiconductor substrate having active areas and a trench isolation region between the active areas. The active areas extend along a first direction. Buried word lines extend along a second direction in the semiconductor substrate. Two of the buried word lines intersect with each of the active areas, separating each of the active areas into a digit line contact area and two cell contact areas. The second direction is not perpendicular to the first direction. A digit line contact is disposed on the digit line contact area. A storage node contact is disposed on each of the two cell contact areas. The digit line contact and the storage node contact are coplanar. At least one digit line extends along a third direction over a main surface of the semiconductor substrate. The at least one digit line is in direct contact with the digit line contact.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: February 18, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Kuo-Chen Wang, Shih-Fan Kuan, Lars Heineck, Sanh D. Tang
  • Patent number: 10566136
    Abstract: Some embodiments include a capacitor. The capacitor has a first electrode with a lower pillar portion, and with an upper container portion over the lower pillar portion. The lower pillar portion has an outer surface. The upper container portion has an inner surface and an outer surface. Dielectric material lines the inner and outer surfaces of the upper container portion, and lines the outer surface of the lower pillar portion. A second electrode extends along the inner and outer surfaces of the upper container portion, and along the outer surface of the lower pillar portion. The second electrode is spaced from the first electrode by the dielectric material. Some embodiments include assemblies (e.g., memory arrays) which have capacitors. Some embodiments include methods of forming capacitors.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: February 18, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Kuo-Chen Wang, Hiroshi Amaike, Kota Hattori
  • Publication number: 20200020694
    Abstract: A method of forming elevationally-elongated conductive structures of integrated circuitry comprises providing a substrate comprising a plurality of spaced elevationally-extending conductive vias individually having an upper horizontal perimeter. The conductive vias individually have an upper horizontal perimeter. Masking material is formed directly above the conductive vias. An opening is formed in the masking material directly above individual of the upper horizontal perimeters of individual of the conductive vias. Individual of the masking-material openings comprise a lower horizontal perimeter that overlaps the upper horizontal perimeter of the conductive via directly there-below. Individual of the masking-material openings comprise a lower horizontal perimeter that overlaps the upper horizontal perimeter of the conductive via directly there-below.
    Type: Application
    Filed: September 23, 2019
    Publication date: January 16, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Kuo-Chen Wang, Sanh D. Tang
  • Publication number: 20200006472
    Abstract: A method of forming elevationally-elongated conductive structures of integrated circuitry comprises providing a substrate comprising a plurality of spaced elevationally-extending conductive vias. Conductive material is formed directly above and directly against the conductive vias. The conductive material has an upper surface and a first sidewall that are directly above individual of the conductive vias in a vertical cross-section. The conductive material has a second sidewall that is not directly above the individual conductive vias. Covering material is formed directly above individual of the upper surfaces and against individual of the first sidewalls directly above the individual conductive vias. The covering material comprises a composition different from that of at least some of the conductive material.
    Type: Application
    Filed: September 12, 2019
    Publication date: January 2, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Kuo-Chen Wang
  • Patent number: 10475796
    Abstract: A method of forming elevationally-elongated conductive structures of integrated circuitry comprises providing a substrate comprising a plurality of spaced elevationally-extending conductive vias individually having an upper horizontal perimeter. The conductive vias individually have an upper horizontal perimeter. Masking material is formed directly above the conductive vias. An opening is formed in the masking material directly above individual of the upper horizontal perimeters of individual of the conductive vias. Individual of the masking-material openings comprise a lower horizontal perimeter that overlaps the upper horizontal perimeter of the conductive via directly there-below. Individual of the masking-material openings comprise a lower horizontal perimeter that overlaps the upper horizontal perimeter of the conductive via directly there-below.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: November 12, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Kuo-Chen Wang, Sanh D. Tang
  • Patent number: 10461149
    Abstract: A method of forming elevationally-elongated conductive structures of integrated circuitry comprises providing a substrate comprising a plurality of spaced elevationally-extending conductive vias. Conductive material is formed directly above and directly against the conductive vias. The conductive material has an upper surface and a first sidewall that are directly above individual of the conductive vias in a vertical cross-section. The conductive material has a second sidewall that is not directly above the individual conductive vias. Covering material is formed directly above individual of the upper surfaces and against individual of the first sidewalls directly above the individual conductive vias. The covering material comprises a composition different from that of at least some of the conductive material.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: October 29, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Kuo-Chen Wang
  • Patent number: 10411995
    Abstract: A network system control method includes intercepting a flow modification message sent by a controller from a network protocol path between a switch and the controller so as to obtain a new flow entry; accessing a flow table of the switch so as to obtain a plurality of flow entries; inserting at least one redundant flow entry according to the new flow entry and the plurality of flow entries; performing an aggregation operation to the new flow entry, the plurality of flow entries and the at least one redundant flow entry so as to generate a set of aggregated flow entries; and updating the flow table using the set of aggregated flow entries.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: September 10, 2019
    Assignees: Inventec (Pudong) Technology Corp., Inventec Corporation
    Inventors: Yu-Ching Ye, Tzu-Yu Chao, Kuo-Chen Wang
  • Patent number: 10361961
    Abstract: A flow entry aggregation method of a network system includes classifying a plurality of flow entries into a plurality of partitions according to a plurality of indicators of the plurality of flow entries, wherein each flow entry utilizes ternary strings to represent at least one field of the flow entry and the plurality of indicators are utilized to indicating network requirements corresponding to the plurality of flow entries; and utilizing bit merging or subset merging to compress the flow entries in the same partition.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: July 23, 2019
    Assignees: Inventec (Pudong) Technology Corp., Inventec Corporation
    Inventors: Tsung-Hsien Tsai, Kuo-Chen Wang, Wei-Feng Wu, Wei-Tso Tsai, Yu-Han Shih