Patents by Inventor Kuo-Cheng Ching

Kuo-Cheng Ching has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190148526
    Abstract: Devices and structures that include a gate spacer having a gap or void are described along with methods of forming such devices and structures. In accordance with some embodiments, a structure includes a substrate, a gate stack over the substrate, a contact over the substrate, and a spacer disposed laterally between the gate stack and the contact. The spacer includes a first dielectric sidewall portion and a second dielectric sidewall portion. A void is disposed between the first dielectric sidewall portion and the second dielectric sidewall portion.
    Type: Application
    Filed: December 21, 2018
    Publication date: May 16, 2019
    Inventors: Kuo-Cheng Ching, Ching-Wei Tsai, Chi-Wen Liu, Ying-Keung Leung
  • Publication number: 20190148244
    Abstract: In accordance with some embodiments, a device includes first and second p-type transistors. The first transistor includes a first channel region including a first material of a first fin. The first transistor includes first and second epitaxial source/drain regions each in a respective first recess in the first material and on opposite sides of the first channel region. The first transistor includes a first gate stack on the first channel region. The second transistor includes a second channel region including a second material of a second fin. The second material is a different material from the first material. The second transistor includes third and fourth epitaxial source/drain regions each in a respective second recess in the second material and on opposite sides of the second channel region. The second transistor includes a second gate stack on the second channel region.
    Type: Application
    Filed: December 21, 2018
    Publication date: May 16, 2019
    Inventors: Kuo-Cheng Ching, Chi-Wen Liu
  • Patent number: 10290635
    Abstract: Various examples of a buried interconnect line are disclosed herein. In an example, a device includes a fin disposed on a substrate. The fin includes an active device. A plurality of isolation features are disposed on the substrate and below the active device. An interconnect is disposed on the substrate and between the plurality of isolation features such that the interconnect is below a topmost surface of the plurality of isolation features. The interconnect is electrically coupled to the active device. In some such examples, a gate stack of the active device is disposed over a channel region of the active device and is electrically coupled to the interconnect. In some such examples, a source/drain contact is electrically coupled to a source/drain region of the active device, and the source/drain contact is electrically coupled to the interconnect.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: May 14, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng Ching, Shi Ning Ju, Kuan-Ting Pan, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 10290737
    Abstract: A semiconductor arrangement comprises a substrate region and a first semiconductor column projecting from the substrate region. The semiconductor arrangement comprises a second semiconductor column projecting from the substrate region. The second semiconductor column is separated a first distance from the first semiconductor column. The first distance is between about 10 nm to about 30 nm.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: May 14, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Jean-Pierre Colinge, Kuo-Cheng Ching, Ta-Pen Guo, Carlos H. Diaz
  • Publication number: 20190139777
    Abstract: A method includes forming a mandrel structure over a semiconductor substrate. A first spacer and a second spacer are formed alongside the mandrel structure. A mask layer is over a first portion of the first spacer, in which a second portion of the first spacer and the second spacer are exposed from the mask layer. The exposed second spacer is etched, in which etching the exposed second spacer is performed such that a polymer is formed over a top surface of the exposed second portion of the first spacer. The mask layer, the polymer, and the mandrel structure are removed. The semiconductor substrate is patterned using the first spacer.
    Type: Application
    Filed: December 17, 2018
    Publication date: May 9, 2019
    Inventors: Jung-Hao CHANG, Chao-Hsien HUANG, Wen-Ting LAN, Shi-Ning JU, Li-Te LIN, Kuo-Cheng CHING
  • Publication number: 20190140075
    Abstract: A method includes forming a first hard mask over a semiconductor substrate, etching the semiconductor substrate to form recesses, with a semiconductor strip located between two neighboring ones of the recesses, forming a second hard mask on sidewalls of the semiconductor strip, performing a first anisotropic etch on the second hard mask to remove horizontal portions of the second hard mask, and performing a second anisotropic etch on the semiconductor substrate using the first hard mask and vertical portions of the second hard mask as an etching mask to extend the recesses down. The method further includes removing the vertical portions of the second hard mask, and forming isolation regions in the recesses. The isolation regions are recessed, and a portion of the semiconductor strip between the isolation regions protrudes higher than the isolation regions to form a semiconductor fin.
    Type: Application
    Filed: December 17, 2018
    Publication date: May 9, 2019
    Inventors: Kuo-Cheng Ching, Shi Ning Ju, Ching-Wei Tsai, Chih-Hao Wang, Ying-Keung Leung, Carlos H Diaz
  • Publication number: 20190139829
    Abstract: A method includes forming a gate stack on a middle portion of s semiconductor fin, and forming a first gate spacer on a sidewall of the gate stack. After the first gate spacer is formed, a template dielectric region is formed to cover the semiconductor fin. The method further includes recessing the template dielectric region. After the recessing, a second gate spacer is formed on the sidewall of the gate stack. The end portion of the semiconductor fin is etched to form a recess in the template dielectric region. A source/drain region is epitaxially grown in the recess.
    Type: Application
    Filed: December 31, 2018
    Publication date: May 9, 2019
    Inventors: Kuo-Cheng Ching, Chi-Wen Liu, Ying-Keung Leung
  • Patent number: 10283508
    Abstract: The present disclosure provides a method for fabricating an integrated circuit device. The method includes providing a precursor including a substrate having first and second metal-oxide-semiconductor (MOS) regions. The first and second MOS regions include first and second gate regions, semiconductor layer stacks, and source/drain regions respectively. The method further includes laterally exposing and oxidizing the semiconductor layer stack in the first gate region to form first outer oxide layer and inner nanowire set, and exposing the first inner nanowire set. A first high-k/metal gate (HK/MG) stack wraps around the first inner nanowire set. The method further includes laterally exposing and oxidizing the semiconductor layer stack in the second gate region to form second outer oxide layer and inner nanowire set, and exposing the second inner nanowire set. A second HK/MG stack wraps around the second inner nanowire set.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: May 7, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Cheng Ching, Ting-Hung Hsu
  • Publication number: 20190123177
    Abstract: A device includes a fin structure protruding over a substrate, wherein the fin structure comprises a plurality of portions formed of different materials, a first carbon doped layer formed between two adjacent portions of the plurality of portions, a second carbon doped layer formed underlying a first source/drain region and a third carbon doped layer formed underlying a second source/drain region.
    Type: Application
    Filed: December 11, 2018
    Publication date: April 25, 2019
    Inventors: Kuo-Cheng Ching, Guan-Lin Chen, Chao-Hsiung Wang, Chi-Wen Liu
  • Publication number: 20190123180
    Abstract: Integrated circuit devices, such as fin-like field effect transistors, and methods of fabricating thereof are disclosed herein. An exemplary device includes a fin that includes a first semiconductor layer and a second semiconductor layer disposed on the first semiconductor layer. The second semiconductor layer includes a partially oxidized portion and a completely oxidized portion. A third semiconductor layer is disposed on the partially oxidized portion of the second semiconductor layer, where a source region and a drain region are defined in the third semiconductor layer. A fourth semiconductor layer is disposed on the completely oxidized portion of the second semiconductor layer, where a channel region is defined in the fourth semiconductor layer between the source region and the drain region defined in the third semiconductor layer. A gate structure is disposed over the channel region defined in the fourth semiconductor layer of the fin.
    Type: Application
    Filed: December 14, 2018
    Publication date: April 25, 2019
    Inventors: Kuo-Cheng Ching, Guan-Lin Chen
  • Publication number: 20190123050
    Abstract: The present disclosure describes a fin-like field-effect transistor (FinFET). The device includes one or more fin structures over a substrate, each with source/drain (S/D) features and a high-k/metal gate (HK/MG). A first HK/MG in a first gate region wraps over an upper portion of a first fin structure, the first fin structure including an epitaxial silicon (Si) layer as its upper portion and an epitaxial growth silicon germanium (SiGe), with a silicon germanium oxide (SiGeO) feature at its outer layer, as its middle portion, and the substrate as its bottom portion. A second HK/MG in a second gate region, wraps over an upper portion of a second fin structure, the second fin structure including an epitaxial SiGe layer as its upper portion, an epitaxial Si layer as it upper middle portion, an epitaxial SiGe layer as its lower middle portion, and the substrate as its bottom portion.
    Type: Application
    Filed: December 12, 2018
    Publication date: April 25, 2019
    Inventors: Kuo-Cheng Ching, Ka-Hing Fung, Chih-Sheng Chang, Zhiqiang Wu
  • Patent number: 10269803
    Abstract: A method includes etching a hybrid substrate to form a recess extending into the hybrid substrate. The hybrid substrate includes a first semiconductor layer having a first surface orientation, a dielectric layer over the first semiconductor layer, and a second semiconductor layer having a second surface orientation different from the first surface orientation. After the etching, a top surface of the first semiconductor layer is exposed to the recess. A spacer is formed on a sidewall of the recess. The spacer contacts a sidewall of the dielectric layer and a sidewall of the second semiconductor layer. An epitaxy is performed to grow an epitaxy semiconductor region from the first semiconductor layer. The spacer is removed.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Shi Ning Ju, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 10269798
    Abstract: In a method of manufacturing a semiconductor device, a separation wall made of a dielectric material is formed between two fin structures. A dummy gate structure is formed over the separation wall and the two fin structures. An interlayer dielectric (ILD) layer is formed over the dummy gate structure. An upper portion of the ILD layer is removed, thereby exposing the dummy gate structure. The dummy gate structure is replaced with a metal gate structure. A planarization operation is performed to expose the separation wall, thereby dividing the metal gate structure into a first gate structure and a second gate structure. The first gate structure and the second gate structure are separated by the separation wall.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: April 23, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng Ching, Chih-Hao Wang, Chih-Liang Chen, Shi Ning Ju
  • Patent number: 10269901
    Abstract: The disclosure relates to a fin field effect transistor (FinFET) formed in and on a substrate having a major surface. The FinFET includes a fin structure protruding from the major surface, which fin includes a lower portion, an upper portion, and a middle portion between the lower portion and upper portion, wherein the fin structure includes a first semiconductor material having a first lattice constant; a pair of notches extending into opposite sides of the middle portion; and a semiconductor liner adjoining the lower portion. The semiconductor liner is a second semiconductor material having a second lattice constant greater than the first lattice constant.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Kuo-Cheng Ching, Chih-Hao Wang, Carlos H. Diaz
  • Patent number: 10269933
    Abstract: A method includes forming a gate stack over top surfaces of a semiconductor strip and insulation regions on opposite sides of the semiconductor strip. The insulation regions include first portions overlapped by the gate stack, and second portions misaligned from the gate stack. An end portion of the semiconductor strip is etched to form a recess, wherein the recess is located between the second portions of the insulation regions. An epitaxy is performed to grow a source/drain region from the recess. After the epitaxy, a recessing is performed to recess the second portions of the insulation regions, with the second portions of the insulation regions having first top surfaces after the first recessing. After the recessing, a dielectric mask layer is formed on the first top surfaces of the second portions of the insulation regions, wherein the dielectric mask layer further extends on a sidewall of the gate stack.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Guan-Lin Chen
  • Patent number: 10269964
    Abstract: A device includes a semiconductor substrate, and isolation regions extending into the semiconductor substrate. A semiconductor fin is between opposite portions of the isolation regions, wherein the semiconductor fin is over top surfaces of the isolation regions. A gate stack overlaps the semiconductor fin. A source/drain region is on a side of the gate stack and connected to the semiconductor fin. The source/drain region includes an inner portion thinner than the semiconductor fin, and an outer portion outside the inner portion. The semiconductor fin and the inner portion of the source/drain region have a same composition of group IV semiconductors.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Kuo-Cheng Ching, Ka-Hing Fung, Zhiqiang Wu
  • Publication number: 20190115438
    Abstract: In accordance with an aspect of the present disclosure, in a method of manufacturing a semiconductor device, a fin structure in which first semiconductor layers and second semiconductor layers are alternately stacked is formed. A sacrificial gate structure is formed over the fin structure. A first cover layer is formed over the sacrificial gate structure, and a second cover layer is formed over the first cover layer. A source/drain epitaxial layer is formed. After the source/drain epitaxial layer is formed, the second cover layer is removed, thereby forming a gap between the source/drain epitaxial layer and the first cover layer, from which a part of the fin structure is exposed. Part of the first semiconductor layers is removed in the gap, thereby forming spaces between the second semiconductor layers. The spaces are filled with a first insulating material.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 18, 2019
    Inventors: Kuo-Cheng CHING, Ching-Wei TSAI, Kuan-Lun CHENG, Chih-Hao WANG
  • Publication number: 20190109136
    Abstract: A method includes etching a hybrid substrate to form a recess extending into the hybrid substrate. The hybrid substrate includes a first semiconductor layer having a first surface orientation, a dielectric layer over the first semiconductor layer, and a second semiconductor layer having a second surface orientation different from the first surface orientation. After the etching, a top surface of the first semiconductor layer is exposed to the recess. A spacer is formed on a sidewall of the recess. The spacer contacts a sidewall of the dielectric layer and a sidewall of the second semiconductor layer. An epitaxy is performed to grow an epitaxy semiconductor region from the first semiconductor layer. The spacer is removed.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 11, 2019
    Inventors: Kuo-Cheng Ching, Shi Ning Ju, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Publication number: 20190103322
    Abstract: Among other things, one or semiconductor arrangements, and techniques for forming such semiconductor arrangements are provided. For example, one or more silicon and silicon germanium stacks are utilized to form PMOS transistors comprising germanium nanowire channels and NMOS transistors comprising silicon nanowire channels. In an example, a first silicon and silicon germanium stack is oxidized to transform silicon to silicon oxide regions, which are removed to form germanium nanowire channels for PMOS transistors. In another example, silicon and germanium layers within a second silicon and silicon germanium stack are removed to form silicon nanowire channels for NMOS transistors. PMOS transistors having germanium nanowire channels and NMOS transistors having silicon nanowire channels are formed as part of a single fabrication process.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 4, 2019
    Inventors: Kuo-Cheng CHING, Carlos H. DIAZ, Jean-Pierre COLINGE
  • Publication number: 20190096768
    Abstract: A method of forming a fin field effect transistor (finFET) on a substrate includes forming a fin structure on the substrate and forming a shallow trench isolation (STI) region on the substrate. First and second fin portions of the fin structure extend above a top surface of the STI region. The method further includes oxidizing the first fin portion to convert a first material of the first fin portion to a second material. The second material is different from the first material of the first fin portion and a material of the second fin portion. The method further includes forming an oxide layer on the oxidized first fin portion and the second fin portion and forming first and second polysilicon structures on the oxide layer.
    Type: Application
    Filed: September 28, 2017
    Publication date: March 28, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Cheng Ching, Chih-Hao Wang, Kuan-Lun Cheng, Yen-Ming Chen