Patents by Inventor Kuo-Chio Liu

Kuo-Chio Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110084391
    Abstract: An integrated circuit structure includes a semiconductor substrate; a first titanium layer over the semiconductor substrate, wherein the first titanium layer has a first thickness less than 130 ?; a first titanium nitride layer over and contacting the first titanium layer; and an aluminum-containing layer over and contacting the first titanium nitride layer.
    Type: Application
    Filed: July 23, 2010
    Publication date: April 14, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shyh-Wei Cheng, Pin-Shyne Chin, Kuo-Chio Liu, Che-Jung Chu, Ming-Chang Hsieh, Hung-Lin Chen, Tian Sheng Lin
  • Patent number: 7091535
    Abstract: A high voltage PMOS device having an improved breakdown voltage is achieved. An asymmetrical high voltage integrated circuit structure comprises a gate electrode on a substrate and source and drain regions within the substrate on either side and adjacent to the gate electrode wherein the source region is encompassed by an n-well. A symmetrical high voltage integrated circuit structure comprises a gate electrode on a substrate, source and drain regions within the substrate on either side and adjacent to the gate electrode, and an n-well in the substrate underlying the gate electrode. The n-well in both structures shifts the breakdown point from the silicon surface to the bottom of the source or drain regions.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: August 15, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Hung-Chih Tsai, Chien-Chih Chou, Ying-Ting Chang, Che-Jung Chu, Kuo-Chio Liu
  • Publication number: 20050194647
    Abstract: A high voltage PMOS device having an improved breakdown voltage is achieved. An asymmetrical high voltage integrated circuit structure comprises a gate electrode on a substrate and source and drain regions within the substrate on either side and adjacent to the gate electrode wherein the source region is encompassed by an n-well. A symmetrical high voltage integrated circuit structure comprises a gate electrode on a substrate, source and drain regions within the substrate on either side and adjacent to the gate electrode, and an n-well in the substrate underlying the gate electrode. The n-well in both structures shifts the breakdown point from the silicon surface to the bottom of the source or drain regions.
    Type: Application
    Filed: March 5, 2004
    Publication date: September 8, 2005
    Inventors: Hung-Chih Tsai, Chien-Chih Chou, Ying-Ting Chang, Che-Jung Chu, Kuo-Chio Liu
  • Patent number: 6747336
    Abstract: A bipolar transistor is described whose I-V curve is such that it operates in two regions, one having low gain and low power consumption and another having higher gain and better current driving ability. Said transistor has a base region made up of two sub regions, the region closest to the emitter having a resistivity about an order a magnitude lower than the second region (which interfaces with the collector). A key feature of the invention is that the region closest to the collector is very uniformly doped, i.e. there is no gradient or built-in field present. In order to produce such a region, epitaxial growth along with boron doping is used rather than more conventional techniques such as ion implantation and/or diffusion.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: June 8, 2004
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jun-Lin Tsai, Ruey-Hsing Liu, Chiou-Shian Peng, Kuo-Chio Liu
  • Patent number: 6590262
    Abstract: A device layout is disclosed for an ESD device for protecting NMOS high voltage transistors where the SCR protection device and the two NMOS transistors are integrated. The two NMOS transistors share an n-type doped drain (ndd) area which has implanted two n+ drains, one for each of the two transistors and a p+ diffusion separates the two n+ drains. Furthermore, the ndd area has implanted an n-well which extends from halfway under the first n+ drain to halfway under the second n+ drain. In addition, the depth of the n-well exceeds the depth of the ndd area. The added p+ diffusion together with the ndd area and the p-substrate of the silicon wafer create the parasitic pnp transistors of the SCR. The shared ndd area together with the n+ sources of the NMOS transistors creates the SCR's two parasitic npn transistors.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: July 8, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jyh-Min Jiang, Kuo-Chio Liu, Jian-Hsing Lee, Ruey-Hsin Liu
  • Patent number: 6569730
    Abstract: A new design for a high voltage bipolar transistor is disclosed. Instead of a buried subcollector (which would be N+ in an NPN device), a buried P+ layer is used. The presence of this P+ layer results in pinch-off between itself and the bipolar base. This allows much higher breakdown voltages to be achieved. In particular, the device will not break down at the bottom of the base-collector junction which is the weak spot for conventional devices. A process for manufacturing this device is described. A particular feature of this new process is that the N type epitaxial layer that is grown over the P+ layer is only about half the thickness of its counterpart in the conventional device. The process is fully compatible with conventional BiCMOS processes and has lower cost.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: May 27, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jun-Lin Tsai, Ruey-Hsin Liu, Jei-Feng Hwang, Kuo-Chio Liu
  • Patent number: 6459127
    Abstract: NMOS transistors for a high voltage process are protected from electrostatic discharge (ESD) by parasitic SCRs, where the two NMOS transistors and the two SCRs are designed to be in a completely symmetrical arrangement so that the currents in the components of the SCRs are completely uniform. This symmetry is achieved by adding a p+ diffusion to the source of one of the NMOS transistors. The added p+ diffusion guarantees that the resistance seen by both SCRs is identical. This insures even current distribution between both SCRs and thereby improves the high voltage characteristics of the ESD device.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: October 1, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jian-Hsing Lee, Kuo-Chio Liu, Bing-Lung Liao, Jiaw-Ren Shih
  • Publication number: 20020115250
    Abstract: A device layout is disclosed for an ESD device for protecting NMOS high voltage transistors where the SCR protection device and the two NMOS transistors are integrated. The two NMOS transistors share an n-type doped drain (ndd) area which has implanted two n+ drains, one for each of the two transistors and a p+ diffusion separates the two n+ drains. Furthermore, the ndd area has implanted an n-well which extends from halfway under the first n+ drain to halfway under the second n+ drain. In addition, the depth of the n-well exceeds the depth of the ndd area. The added p+ diffusion together with the ndd area and the p-substrate of the silicon wafer create the parasitic pnp transistors of the SCR. The shared ndd area together with the n+ sources of the NMOS transistors creates the SCR's two parasitic npn transistors.
    Type: Application
    Filed: February 26, 2002
    Publication date: August 22, 2002
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Jyh-Min Jiang, Kuo-Chio Liu, Jian-Hsing Lee, Ruey-Hsin Liu
  • Publication number: 20020105054
    Abstract: A new design for a high voltage bipolar transistor is disclosed. Instead of a buried subcollector (which would be N+ in an NPN device), a buried P+ layer is used. The presence of this P+ layer results in pinch-off between itself and the bipolar base. This allows much higher breakdown voltages to be achieved. In particular, the device will not break down at the bottom of the base-collector junction which is the weak spot for conventional devices. A process for manufacturing this device is described. A particular feature of this new process is that the N type epitaxial layer that is grown over the P+ layer is only about half the thickness of its counterpart in the conventional device. The process is fully compatible with conventional BiCMOS processes and has lower cost.
    Type: Application
    Filed: March 6, 2002
    Publication date: August 8, 2002
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Jun-Lin Tsai, Ruey-Hsin Liu, Jei-Feng Hwang, Kuo-Chio Liu
  • Patent number: 6423590
    Abstract: A new design for a high voltage bipolar transistor is disclosed. Instead of a buried subcollector (which would be N+ in an NPN device), a buried P+ layer is used. The presence of this P+ layer results in pinch-off between itself and the bipolar base. This allows much higher breakdown voltages to be achieved. In particular, the device will not break down at the bottom of the base-collector junction which is the weak spot for conventional devices. A process for manufacturing this device is described. A particular feature of this new process is that the N type epitaxial layer that is grown over the P+ layer is only about half the thickness of its counterpart in the conventional device. The process is fully compatible with conventional BiCMOS processes and has lower cost.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: July 23, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jun-Lin Tsai, Ruey-Hsin Lin, Jei-Feng Hwang, Kuo-Chio Liu
  • Publication number: 20020081783
    Abstract: NMOS transistors for a high voltage process are protected from electrostatic discharge (ESD) by parasitic SCRs, where the two NMOS transistors and the two SCRs are designed to be in a completely symmetrical arrangement so that the currents in the components of the SCRs are completely uniform. This symmetry is achieved by adding a p+ diffusion to the source of one of the NMOS transistors. The added p+ diffusion guarantees that the resistance seen by both SCRs is identical. This insures even current distribution between both SCRs and thereby improves the high voltage characteristics of the ESD device.
    Type: Application
    Filed: January 14, 2002
    Publication date: June 27, 2002
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Jian-Hsing Lee, Kuo-Chio Liu, Bing-Lung Liao, Jiaw-Ren Shih
  • Patent number: 6358781
    Abstract: NMOS transistors for a high voltage process are protected from electrostatic discharge (ESD) by parasitic SCRs, where the two NMOS transistors and the two SCRs are designed to be in a completely symmetrical arrangement so that the currents in the components of the SCRs are completely uniform. This symmetry is achieved by adding a p+ diffusion to the source of one of the NMOS transistors. The added p+ diffusion guarantees that the resistance seen by both SCRs is identical. This insures even current distribution between both SCRs and thereby improves the high voltage characteristics of the ESD device.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: March 19, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jian-Hsing Lee, Kuo-Chio Liu, Bing-Lung Liao, Jiaw-Ren Shih
  • Patent number: 6323074
    Abstract: A device layout is disclosed for an ESD device for protecting NMOS high voltage transistors where the SCR protection device and the two NMOS transistors are integrated. The two NMOS transistors share an n-type doped drain (ndd) area which has implanted two n+ drains, one for each of the two transistors and a p+ diffusion separates the two n+ drains. Furthermore, the ndd area has implanted an n-well which extends from halfway under the first n+ drain to halfway under the second n+ drain. In addition, the depth of the n-well exceeds the depth of the ndd area. The added p+diffusion together with the ndd area and the p-substrate of the silicon wafer create the parasitic pnp transistors of the SCR. The shared ndd area together with the n+ sources of the NMOS transistors creates the SCR's two parasitic npn transistors.
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: November 27, 2001
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jyh-Min Jiang, Kuo-Chio Liu, Jian-Hsing Lee, Ruey-Hsin Liu
  • Publication number: 20010017379
    Abstract: A new design for a high voltage bipolar transistor is disclosed. Instead of a buried subcollector (which would be N+ in an NPN device), a buried P+ layer is used. The presence of this P+ layer results in pinch-off between itself and the bipolar base. This allows much higher breakdown voltages to be achieved. In particular, the device will not break down at the bottom of the base-collector junction which is the weak spot for conventional devices. A process for manufacturing this device is described. A particular feature of this new process is that the N type epitaxial layer that is grown over the P+ layer is only about half the thickness of its counterpart in the conventional device. The process is fully compatible with conventional BiCMOS processes and has lower cost.
    Type: Application
    Filed: May 2, 2001
    Publication date: August 30, 2001
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Jun-Lin Tsai, Ruey-Hsin Lin, Jei-Feng Hwang, Kuo-Chio Liu
  • Publication number: 20010010963
    Abstract: A bipolar transistor is described whose I-V curve is such that it operates in two regions, one having low gain and low power consumption and another having higher gain and better current driving ability. Said transistor has a base region made up of two sub regions, the region closest to the emitter having a resistivity about an order a magnitude lower than the second region (which interfaces with the collector). A key feature of the invention is that the region closest to the collector is very uniformly doped, i.e. there is no gradient or built-in field present. In order to produce such a region, epitaxial growth along with boron doping is used rather than more conventional techniques such as ion implantation and/or diffusion.
    Type: Application
    Filed: March 13, 2001
    Publication date: August 2, 2001
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Jun-Lin Tsai, Ruey-Hsing Liu, Chiou-Shian Peng, Kuo-Chio Liu
  • Patent number: 6245609
    Abstract: A new design for a high voltage bipolar transistor is disclosed. Instead of a buried subcollector (which would be N+ in an NPN device), a buried P+ layer is used. The presence of this P+ layer results in pinch-off between itself and the bipolar base. This allows much higher breakdown voltages to be achieved. In particular, the device will not break down at the bottom of the base-collector junction which is the weak spot for conventional devices. A process for manufacturing this device is described. A particular feature of this new process is that the N type epitaxial layer that is grown over the P+ layer is only about half the thickness of its counterpart in the conventional device. The process is fully compatible with conventional BiCMOS processes and has lower cost.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: June 12, 2001
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jun-Lin Tsai, Ruey-Hsin Liu, Jei-Feng Hwang, Kuo-Chio Liu
  • Patent number: 6211028
    Abstract: A bipolar transistor is described whose I-V curve is such that it operates in two regions, one having low gain and low power consumption and another having higher gain and better current driving ability. Said transistor has a base region made up of two sub regions, the region closest to the emitter having a resistivity about an order a magnitude lower than the second region (which interfaces with the collector). A key feature of the invention is that the region closest to the collector is very uniformly doped, i.e. there is no gradient or built-in field present. In order to produce such a region, epitaxial growth along with boron doping is used rather than more conventional techniques such as ion implantation and/or diffusion.
    Type: Grant
    Filed: February 5, 1999
    Date of Patent: April 3, 2001
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jun-Lin Tsai, Ruey-Hsing Liu, Chiou-Shian Peng, Kuo-Chio Liu
  • Patent number: 6162695
    Abstract: A method for fabricating a buried layer pinched collector bipolar, (BPCB), device, sharing several process steps with simultaneously formed CMOS devices, has been developed. The BPCB device fabrication sequence features the use of field ring regions, placed in an N well region, and located between a base and collector region. The use of the field ring results in an increase in collector-emitter breakdown voltage, as a result of the reduction in local dopant concentration in the N well region. This phenomena, the reduction the local dopant concentration in the N well region, in the vicinity of the field ring region, allows a higher N well dopant concentration to be used, resulting in increased frequency responses, (Ft), of the BPCB device, when compared to counterparts fabricated without the field ring regions, and thus with a lower N well dopant concentration.
    Type: Grant
    Filed: August 18, 1999
    Date of Patent: December 19, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jei-Feng Hwang, Jun-Lin Tsai, Ruey-Hsin Liou, Kuo-Chio Liu
  • Patent number: 6066879
    Abstract: A device layout is disclosed for an ESD device for protecting NMOS or Drain-Extended (DENMOS) high power transistors where the protection device (an SCR) and the NMOS or DENMOS transistors are integrated saving on silicon real estate. The integration is made possible by adding a p.sup.+ diffusion to the n-well (drain) of a high power NMOS (DENMOS) transistor such that the added p.sup.+ diffusion together with the aforementioned n-well and the p-substrate of the silicon wafer create one of the two transistors of the SCR. A low triggering voltage of the SCR is achieved by having the second parasitic npn transistor of the SCR in parallel with the NMOS (DENMOS) transistor by sharing the n-well (collector/drain), p-substrate (base/channel region), and an adjacent n.sup.+ diffusion (emitter/source) in the p-substrate. A high HBM ESD Passing Voltage is obtained by utilizing the tank oxide method of a DENMOS transistor.
    Type: Grant
    Filed: May 3, 1999
    Date of Patent: May 23, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jian-Hsing Lee, Kuo-Chio Liu