Patents by Inventor Kurt Peter Wachtler

Kurt Peter Wachtler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11538717
    Abstract: Electronic packages and related methods are disclosed. An example electronic package apparatus includes a substrate and an electronic component. A protective material is positioned on a first surface, a second surface and all side surfaces of the electronic component to encase the electronic component. An enclosure is coupled to the substrate to cover the protective material and the electronic component.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: December 27, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kurt Peter Wachtler, Anindya Poddar, Usman Mahmood Chaudhry
  • Patent number: 11538767
    Abstract: An integrated circuit includes a lead frame, a first die, and a second die. The first die is bonded to and electrically connected to the lead frame. The second die is electrically connected to and spaced apart from the first die.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: December 27, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Barry Jon Male, Paul Merle Emerson, Kurt Peter Wachtler
  • Patent number: 11498831
    Abstract: A packaged micro-electro-mechanical system (MEMS) device (100) comprises a circuitry chip (101) attached to the pad (110) of a substrate with leads (111), and a MEMS (150) vertically attached to the chip surface by a layer (140) of low modulus silicone compound. On the chip surface, the MEMS device is surrounded by a polyimide ring (130) with a surface phobic to silicone compounds. A dome-shaped glob (160) of cured low modulus silicone material covers the MEMS and the MEMS terminal bonding wire spans (180); the glob is restricted to the chip surface area inside the polyimide ring and has a surface non-adhesive to epoxy-based molding compounds. A package (190) of polymeric molding compound encapsulates the vertical assembly of the glob embedding the MEMS, the circuitry chip, and portions of the substrate; the molding compound is non-adhering to the glob surface yet adhering to all other surfaces.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: November 15, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kurt Peter Wachtler, Makoto Yoshino, Ayumu Kuroda, Brian E. Goodlin, Karen Kirmse, Benjamin Cook, Genki Yano, Stuart Jacobsen
  • Patent number: 11387782
    Abstract: A stacked-die oscillator package includes an oscillator circuit die having inner bond pads, and outer bond pads, and a bulk acoustic wave (BAW) resonator die having a piezoelectric transducer with a first and second BAW bond pad on a same side coupled to a top and bottom electrode layer across a piezoelectric layer. A first metal bump is on the first BAW bond pad and a second metal bump is on the second BAW bond pad flip chip bonded to the inner bond pads of the oscillator circuit die. A polymer material is in a portion of a gap between the BAW and oscillator circuit die.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: July 12, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ricky A. Jackson, Kurt Peter Wachtler
  • Publication number: 20210126585
    Abstract: A stacked-die oscillator package includes an oscillator circuit die having inner bond pads, and outer bond pads, and a bulk acoustic wave (BAW) resonator die having a piezoelectric transducer with a first and second BAW bond pad on a same side coupled to a top and bottom electrode layer across a piezoelectric layer. A first metal bump is on the first BAW bond pad and a second metal bump is on the second BAW bond pad flip chip bonded to the inner bond pads of the oscillator circuit die. A polymer material is in a portion of a gap between the BAW and oscillator circuit die.
    Type: Application
    Filed: January 6, 2021
    Publication date: April 29, 2021
    Inventors: Ricky A. Jackson, Kurt Peter Wachtler
  • Publication number: 20210090940
    Abstract: Electronic packages and related methods are disclosed. An example electronic package apparatus includes a substrate and an electronic component. A protective material is positioned on a first surface, a second surface and all side surfaces of the electronic component to encase the electronic component. An enclosure is coupled to the substrate to cover the protective material and the electronic component.
    Type: Application
    Filed: December 8, 2020
    Publication date: March 25, 2021
    Inventors: Kurt Peter Wachtler, Anindya Poddar, Usman Mahmood Chaudhry
  • Publication number: 20210091012
    Abstract: A floating die package including a cavity formed through sublimation of a sacrificial die encapsulant and sublimation or separation of die attach materials after molding assembly. A pinhole vent in the molding structure is provided as a sublimation path to allow gases to escape, whereby the die or die stack is released from the substrate and suspended in the cavity by the bond wires only.
    Type: Application
    Filed: December 8, 2020
    Publication date: March 25, 2021
    Inventors: Benjamin Stassen Cook, Steven Kummerl, Kurt Peter Wachtler
  • Patent number: 10892712
    Abstract: A stacked-die oscillator package includes an oscillator circuit die having inner bond pads, and outer bond pads, and a bulk acoustic wave (BAW) resonator die having a piezoelectric transducer with a first and second BAW bond pad on a same side coupled to a top and bottom electrode layer across a piezoelectric layer. A first metal bump is on the first BAW bond pad and a second metal bump is on the second BAW bond pad flip chip bonded to the inner bond pads of the oscillator circuit die. A polymer material is in a portion of a gap between the BAW and oscillator circuit die.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: January 12, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ricky A. Jackson, Kurt Peter Wachtler
  • Publication number: 20210005537
    Abstract: An integrated circuit die may be fabricating to have a plurality of contacts. A metal post may be formed on each of the plurality of contacts. A plurality of bumps may be formed on a plurality of contact regions of a leadframe or on the posts, in which the plurality of bumps are formed with a material that includes metal nanoparticles. The IC die may be attached to the leadframe by aligning the metal posts to the leadframe and sintering the metal nanoparticles in the plurality of bumps to form a sintered metal bond between each metal post and corresponding contact region of the leadframe.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 7, 2021
    Inventors: Kurt Peter Wachtler, Seunghyun Chae, Benjamin Stassen Cook
  • Patent number: 10861796
    Abstract: A floating die package including a cavity formed through sublimation of a sacrificial die encapsulant and sublimation or separation of die attach materials after molding assembly. A pinhole vent in the molding structure is provided as a sublimation path to allow gases to escape, whereby the die or die stack is released from the substrate and suspended in the cavity by the bond wires only.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: December 8, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Benjamin Stassen Cook, Steven Kummerl, Kurt Peter Wachtler
  • Patent number: 10861741
    Abstract: Electronic packages and related methods are disclosed. An example electronic package apparatus includes a substrate and an electronic component. A protective material is positioned on a first surface, a second surface and all side surfaces of the electronic component to encase the electronic component. An enclosure is coupled to the substrate to cover the protective material and the electronic component.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: December 8, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kurt Peter Wachtler, Anindya Poddar, Usman Mahmood Chaudhry
  • Publication number: 20200354214
    Abstract: A packaged micro-electro-mechanical system (MEMS) device (100) comprises a circuitry chip (101) attached to the pad (110) of a substrate with leads (111), and a MEMS (150) vertically attached to the chip surface by a layer (140) of low modulus silicone compound. On the chip surface, the MEMS device is surrounded by a polyimide ring (130) with a surface phobic to silicone compounds. A dome-shaped glob (160) of cured low modulus silicone material covers the MEMS and the MEMS terminal bonding wire spans (180); the glob is restricted to the chip surface area inside the polyimide ring and has a surface non-adhesive to epoxy-based molding compounds. A package (190) of polymeric molding compound encapsulates the vertical assembly of the glob embedding the MEMS, the circuitry chip, and portions of the substrate; the molding compound is non-adhering to the glob surface yet adhering to all other surfaces.
    Type: Application
    Filed: July 28, 2020
    Publication date: November 12, 2020
    Inventors: Kurt Peter Wachtler, Makoto Yoshino, Ayumu Kuroda, Brian E. Goodlin, Karen Kirmse, Benjamin Cook, Genki Yano, Stuart Jacobsen
  • Patent number: 10723616
    Abstract: A packaged micro-electro-mechanical system (MEMS) device (100) comprises a circuitry chip (101) attached to the pad (110) of a substrate with leads (111), and a MEMS (150) vertically attached to the chip surface by a layer (140) of low modulus silicone compound. On the chip surface, the MEMS device is surrounded by a polyimide ring (130) with a surface phobic to silicone compounds. A dome-shaped glob (160) of cured low modulus silicone material covers the MEMS and the MEMS terminal bonding wire spans (180); the glob is restricted to the chip surface area inside the polyimide ring and has a surface non-adhesive to epoxy-based molding compounds. A package (190) of polymeric molding compound encapsulates the vertical assembly of the glob embedding the MEMS, the circuitry chip, and portions of the substrate; the molding compound is non-adhering to the glob surface yet adhering to all other surfaces.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: July 28, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kurt Peter Wachtler, Makoto Yoshino, Ayumu Kuroda, Brian E. Goodlin, Karen Kirmse, Benjamin Cook, Genki Yano, Stuart Jacobsen
  • Publication number: 20200153387
    Abstract: A stacked-die oscillator package includes an oscillator circuit die having inner bond pads, and outer bond pads, and a bulk acoustic wave (BAW) resonator die having a piezoelectric transducer with a first and second BAW bond pad on a same side coupled to a top and bottom electrode layer across a piezoelectric layer. A first metal bump is on the first BAW bond pad and a second metal bump is on the second BAW bond pad flip chip bonded to the inner bond pads of the oscillator circuit die. A polymer material is in a portion of a gap between the BAW and oscillator circuit die.
    Type: Application
    Filed: January 21, 2020
    Publication date: May 14, 2020
    Inventors: Ricky A. Jackson, Kurt Peter Wachtler
  • Patent number: 10574184
    Abstract: A stacked-die oscillator package includes an oscillator circuit die having inner bond pads, and outer bond pads, and a bulk acoustic wave (BAW) resonator die having a piezoelectric transducer with a first and second BAW bond pad on a same side coupled to a top and bottom electrode layer across a piezoelectric layer. A first metal bump is on the first BAW bond pad and a second metal bump is on the second BAW bond pad flip chip bonded to the inner bond pads of the oscillator circuit die. A polymer material is in a portion of a gap between the BAW and oscillator circuit die.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: February 25, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ricky A Jackson, Kurt Peter Wachtler
  • Publication number: 20190341885
    Abstract: A stacked-die oscillator package includes an oscillator circuit die having inner bond pads, and outer bond pads, and a bulk acoustic wave (BAW) resonator die having a piezoelectric transducer with a first and second BAW bond pad on a same side coupled to a top and bottom electrode layer across a piezoelectric layer. A first metal bump is on the first BAW bond pad and a second metal bump is on the second BAW bond pad flip chip bonded to the inner bond pads of the oscillator circuit die. A polymer material is in a portion of a gap between the BAW and oscillator circuit die.
    Type: Application
    Filed: May 1, 2018
    Publication date: November 7, 2019
    Inventors: RICKY A. JACKSON, KURT PETER WACHTLER
  • Publication number: 20190206806
    Abstract: An integrated circuit includes a lead frame, a first die, and a second die. The first die is bonded to and electrically connected to the lead frame. The second die is electrically connected to and spaced apart from the first die.
    Type: Application
    Filed: April 6, 2018
    Publication date: July 4, 2019
    Inventors: Barry Jon MALE, Paul Merle EMERSON, Kurt Peter WACHTLER
  • Publication number: 20190169019
    Abstract: A packaged micro-electro-mechanical system (MEMS) device (100) comprises a circuitry chip (101) attached to the pad (110) of a substrate with leads (111), and a MEMS (150) vertically attached to the chip surface by a layer (140) of low modulus silicone compound. On the chip surface, the MEMS device is surrounded by a polyimide ring (130) with a surface phobic to silicone compounds. A dome-shaped glob (160) of cured low modulus silicone material covers the MEMS and the MEMS terminal bonding wire spans (180); the glob is restricted to the chip surface area inside the polyimide ring and has a surface non-adhesive to epoxy-based molding compounds. A package (190) of polymeric molding compound encapsulates the vertical assembly of the glob embedding the MEMS, the circuitry chip, and portions of the substrate; the molding compound is non-adhering to the glob surface yet adhering to all other surfaces.
    Type: Application
    Filed: February 4, 2019
    Publication date: June 6, 2019
    Inventors: Kurt Peter Wachtler, Makoto Yoshino, Ayumu Kuroda, Brian E. Goodlin, Karen Kirmse, Benjamin Cook, Genki Yano, Stuart Jacobsen
  • Publication number: 20190164807
    Abstract: Electronic packages and related methods are disclosed. An example electronic package apparatus includes a substrate and an electronic component. A protective material is positioned on a first surface, a second surface and all side surfaces of the electronic component to encase the electronic component. An enclosure is coupled to the substrate to cover the protective material and the electronic component.
    Type: Application
    Filed: November 27, 2017
    Publication date: May 30, 2019
    Inventors: Kurt Peter Wachtler, Anindya Poddar, Usman Mahmood Chaudhry
  • Patent number: 10233074
    Abstract: A packaged micro-electro-mechanical system (MEMS) device (100) comprises a circuitry chip (101) attached to the pad (110) of a substrate with leads (111), and a MEMS (150) vertically attached to the chip surface by a layer (140) of low modulus silicone compound. On the chip surface, the MEMS device is surrounded by a polyimide ring (130) with a surface phobic to silicone compounds. A dome-shaped glob (160) of cured low modulus silicone material covers the MEMS and the MEMS terminal bonding wire spans (180); the glob is restricted to the chip surface area inside the polyimide ring and has a surface non-adhesive to epoxy-based molding compounds. A package (190) of polymeric molding compound encapsulates the vertical assembly of the glob embedding the MEMS, the circuitry chip, and portions of the substrate; the molding compound is non-adhering to the glob surface yet adhering to all other surfaces.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: March 19, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kurt Peter Wachtler, Makoto Yoshino, Ayumu Kuroda, Brian E. Goodlin, Karen Kirmse, Benjamin Cook, Genki Yano, Stuart Jacobsen