Patents by Inventor Kwan-Yong Lim

Kwan-Yong Lim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10879171
    Abstract: One illustrative integrated circuit product disclosed herein includes a vertically oriented semiconductor (VOS) structure positioned above a semiconductor substrate, a conductive silicide vertically oriented e-fuse positioned along at least a portion of a vertical height of the VOS structure wherein the conductive silicide vertically oriented e-fuse comprises a metal silicide material that extends through at least a portion of an entire lateral width of the VOS structure, and a conductive metal silicide region in the semiconductor substrate that is conductively coupled to the conductive silicide vertically oriented e-fuse.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: December 29, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Chun Yu Wong, Kwan-Yong Lim, Seong Yeol Mun, Jagar Singh, Hui Zang
  • Patent number: 10580779
    Abstract: A memory cell includes vertical transistors including first and second pass gate (PG) transistors, first and second pull-up (PU1 and PU2) transistors, and first and second pull-down (PD1 and PD2) transistors. A first bottom electrode connects bottom source/drain (SD) regions of PU1 and PU2. A second bottom electrode connects bottom SD regions of PD1 and PD2. A first shared contact connects the top SD region of PU2 to the gate structure of PU1. A second shared contact connects the top SD region of PD1 to the gate structure of PD2. A first top electrode is connected to the top SD regions of PG1, PU1 and the second shared contact to define a first storage node of the memory cell. A second top electrode is connected to the top SD regions of PG2, PU2 and the first shared contact to define a second storage node of the memory cell.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: March 3, 2020
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Kwan-Yong Lim, Ryan Ryoung-Han Kim
  • Publication number: 20200020631
    Abstract: One illustrative integrated circuit product disclosed herein includes a vertically oriented semiconductor (VOS) structure positioned above a semiconductor substrate, a conductive silicide vertically oriented e-fuse positioned along at least a portion of a vertical height of the VOS structure wherein the conductive silicide vertically oriented e-fuse comprises a metal silicide material that extends through at least a portion of an entire lateral width of the VOS structure, and a conductive metal silicide region in the semiconductor substrate that is conductively coupled to the conductive silicide vertically oriented e-fuse.
    Type: Application
    Filed: September 23, 2019
    Publication date: January 16, 2020
    Inventors: Chun Yu Wong, Kwan-Yong Lim, Seong Yeol Mun, Jagar Singh, Hui Zang
  • Patent number: 10529724
    Abstract: A vertical SRAM cell includes a first (1st) inverter having a 1st common gate structure operatively connecting channels of a 1st pull-up (PU) and a 1st pull-down (PD) transistor. A 1st metal contact electrically connects bottom source/drain (S/D) regions of the 1st PU and 1st PD transistors. A second (2nd) inverter has a 2nd common gate structure operatively connecting channels of a 2nd PU and a 2nd PD transistor. A 2nd metal contact electrically connects bottom S/D regions of the 2nd PU and 2nd PD transistors. A 1st cross-coupled contact electrically connects the 2nd common gate structure to the 1st metal contact. The 2nd common gate structure entirely surrounds a perimeter of the 1st cross-coupled contact. A 2nd cross-coupled contact electrically connects the 1st common gate structure to the 2nd metal contact. The 1st common gate structure entirely surrounds a perimeter of the 2nd cross-coupled contact.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: January 7, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hui Zang, Manfred Eller, Kwan-Yong Lim
  • Patent number: 10510662
    Abstract: One illustrative method disclosed herein comprises forming a vertically oriented semiconductor (VOS) structure in a semiconductor substrate and performing a metal silicide formation process to convert at least a portion of the VOS structure into a metal silicide material, thereby forming a conductive silicide vertically oriented e-fuse.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: December 17, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Chun Yu Wong, Kwan-Yong Lim, Seong Yeol Mun, Jagar Singh, Hui Zang
  • Patent number: 10468481
    Abstract: A methodology for forming a single diffusion break structure in a FinFET device involves localized, in situ oxidation of a portion of a semiconductor fin. Fin oxidation within a fin cut region may be preceded by the formation of epitaxial source/drain regions over the fin, as well as by a gate cut module, where portions of a sacrificial gate that straddle the fin are replaced by an isolation layer. Localized oxidation of the fin enables the stress state in adjacent, un-oxidized portions of the fin to be retained, which may beneficially impact carrier mobility and hence conductivity within channel portions of the fin.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: November 5, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Haiting Wang, Hui Zang, Chun Yu Wong, Kwan-Yong Lim
  • Publication number: 20190267387
    Abstract: A memory cell includes vertical transistors including first and second pass gate (PG) transistors, first and second pull-up (PU1 and PU2) transistors, and first and second pull-down (PD1 and PD2) transistors. A first bottom electrode connects bottom source/drain (SD) regions of PU1 and PU2. A second bottom electrode connects bottom SD regions of PD1 and PD2. A first shared contact connects the top SD region of PU2 to the gate structure of PU1. A second shared contact connects the top SD region of PD1 to the gate structure of PD2. A first top electrode is connected to the top SD regions of PG1, PU1 and the second shared contact to define a first storage node of the memory cell. A second top electrode is connected to the top SD regions of PG2, PU2 and the first shared contact to define a second storage node of the memory cell.
    Type: Application
    Filed: February 23, 2018
    Publication date: August 29, 2019
    Inventors: Kwan-Yong Lim, Ryan Ryoung-Han Kim
  • Publication number: 20190229183
    Abstract: A methodology for forming a single diffusion break structure in a FinFET device involves localized, in situ oxidation of a portion of a semiconductor fin. Fin oxidation within a fin cut region may be preceded by the formation of epitaxial source/drain regions over the fin, as well as by a gate cut module, where portions of a sacrificial gate that straddle the fin are replaced by an isolation layer. Localized oxidation of the fin enables the stress state in adjacent, un-oxidized portions of the fin to be retained, which may beneficially impact carrier mobility and hence conductivity within channel portions of the fin.
    Type: Application
    Filed: January 19, 2018
    Publication date: July 25, 2019
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Haiting WANG, Hui ZANG, Chun Yu WONG, Kwan-Yong LIM
  • Patent number: 10297672
    Abstract: A method of forming a 14 nm triple gate by adding a MG in the dual gate process and the resulting device are provided. Embodiments include forming an EG region, a MG region and a SG region in a first, second and third portions of a Si substrate, respectively; forming an IL over the EG, MG and SG regions; oxidizing the IL; forming a HK dielectric layer over the IL; performing PDA on the HK dielectric layer; forming a PSA TiN layer over the HK dielectric layer; forming an a-Si cap layer over the PSA TiN layer; forming a photoresist over the a-Si cap layer in the EG and SG regions; removing the a-Si cap layer in the MG region, exposing the PSA TiN layer; stripping the photoresist; and annealing the a-Si cap and PSA TiN layers.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: May 21, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Seong Yeol Mun, Kwan-Yong Lim, Kijik Lee
  • Patent number: 10290738
    Abstract: One illustrative method disclosed includes, among other things, forming a gate structure around a fin and above a layer of insulating material, forming a gate spacer adjacent the gate structure and a fin spacer positioned adjacent the fin above the insulating material, the fin spacer leaving an upper surface of the fin exposed, and performing at least one etching process to remove at least a portion of the fin positioned between the fin spacer, the fin having a recessed upper surface that at least partially defines a fin recess positioned between the fin spacer. In this example, the method further includes forming an epi semiconductor material on the fin recess and removing the fin spacer from adjacent the epi semiconductor material while leaving a portion of the gate spacer in position adjacent the gate structure.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: May 14, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ruilong Xie, Christopher M. Prindle, Kwan-Yong Lim
  • Publication number: 20190139892
    Abstract: One illustrative method disclosed herein comprises forming a vertically oriented semiconductor (VOS) structure in a semiconductor substrate and performing a metal silicide formation process to convert at least a portion of the VOS structure into a metal silicide material, thereby forming a conductive silicide vertically oriented e-fuse.
    Type: Application
    Filed: November 7, 2017
    Publication date: May 9, 2019
    Inventors: Chun Yu Wong, Kwan-Yong Lim, Seong Yeol Mun, Jagar Singh, Hui Zang
  • Patent number: 10243073
    Abstract: Embodiments of the present invention provide methods and systems for co-integrating a short-channel vertical transistor and a long-channel transistor. One method may include: from a starting substrate, forming a wide fin, wherein the wide fin comprises a wide active region; depositing a recess mask over a top surface of the starting substrate; recessing a long channel based on the deposited recess mask; depositing a gate electrode and a gate material, to form a gate structure; and forming SD contacts in an SD region of the long-channel transistor.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: March 26, 2019
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Steven Bentley, Kwan-Yong Lim, Hiroaki Niimi, Junli Wang
  • Patent number: 10236291
    Abstract: At least one method, apparatus and system are disclosed for forming a fin field effect transistor (finFET) having an oxide level in a fin array region within a predetermined height of the oxide level of a field region. A first oxide process is performed for controlling a first oxide recess level in a field region adjacent to a fin array region comprising a plurality of fins in a finFET device. The first oxide process comprises depositing an oxide layer over the field region and the fin array region and performing an oxide recess process to bring the oxide layer to the first oxide recess level in the field region. A second oxide process is performed for controlling a second oxide recess level in the fin array region. The second oxide process comprises isolating the fin array region, depositing oxide material, and performing an oxide recess process to bring the oxide level in the fin array region to the second oxide recess level.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: March 19, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Min Gyu Sung, Chanro Park, Hoon Kim, Ruilong Xie, Kwan-Yong Lim
  • Publication number: 20190027483
    Abstract: A vertical SRAM cell includes a first (1st) inverter having a 1st common gate structure operatively connecting channels of a 1st pull-up (PU) and a 1st pull-down (PD) transistor. A 1st metal contact electrically connects bottom source/drain (S/D) regions of the 1st PU and 1st PD transistors. A second (2nd) inverter has a 2nd common gate structure operatively connecting channels of a 2nd PU and a 2nd PD transistor. A 2nd metal contact electrically connects bottom S/D regions of the 2nd PU and 2nd PD transistors. A 1st cross-coupled contact electrically connects the 2nd common gate structure to the 1st metal contact. The 2nd common gate structure entirely surrounds a perimeter of the 1st cross-coupled contact. A 2nd cross-coupled contact electrically connects the 1st common gate structure to the 2nd metal contact. The 1st common gate structure entirely surrounds a perimeter of the 2nd cross-coupled contact.
    Type: Application
    Filed: August 7, 2018
    Publication date: January 24, 2019
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Hui ZANG, Manfred ELLER, Kwan-Yong LIM
  • Publication number: 20190019880
    Abstract: A method of forming a 14 nm triple gate by adding a MG in the dual gate process and the resulting device are provided. Embodiments include forming an EG region, a MG region and a SG region in a first, second and third portions of a Si substrate, respectively; forming an IL over the EG, MG and SG regions; oxidizing the IL; forming a HK dielectric layer over the IL; performing PDA on the HK dielectric layer; forming a PSA TiN layer over the HK dielectric layer; forming an a-Si cap layer over the PSA TiN layer; forming a photoresist over the a-Si cap layer in the EG and SG regions; removing the a-Si cap layer in the MG region, exposing the PSA TiN layer; stripping the photoresist; and annealing the a-Si cap and PSA TiN layers.
    Type: Application
    Filed: July 13, 2017
    Publication date: January 17, 2019
    Inventors: Seong Yeol MUN, Kwan-Yong LIM, Kijik LEE
  • Patent number: 10163900
    Abstract: Structures for the integration of a vertical field-effect transistor and a saddle fin-type field-effect transistor into an integrated circuit, as well as methods of integrating a vertical field-effect transistor and a saddle fin-type field-effect transistor into an integrated circuit. A trench isolation is formed in a substrate that defines a first device region and a second device region. A first semiconductor fin is formed that projects from the first device region and a second semiconductor fin is formed that projects from the second device region. A vertical field-effect transistor is formed using the first semiconductor fin, and a saddle fin-type field-effect transistor is formed using the second semiconductor fin. A top surface of the trench isolation in the second device region adjacent to the second semiconductor fin is recessed relative to the top surface of the trench isolation in the first device region adjacent to the first semiconductor fin.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: December 25, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ruilong Xie, Min Gyu Sung, Kwan-Yong Lim
  • Patent number: 10141446
    Abstract: Formation of a bottom junction in vertical FET devices may include, for instance, providing an intermediate semiconductor structure comprising a semiconductor substrate, a fin disposed on the semiconductor substrate. The fin has a top surface, spaced-apart vertical sides. A mask is disposed over the top surface of the fin, and at least one is disposed over the vertical sides of the fin. Portions of the substrate are removed to define spaced-apart recesses each extending below a respective one of the spacers. Semiconductor material is grown, such as epitaxially grown, in the recesses.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: November 27, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Hiroaki Niimi, Kwan-Yong Lim, Steven John Bentley, Daniel Chanemougame
  • Publication number: 20180323269
    Abstract: One illustrative method disclosed includes, among other things, forming a gate around an initial fin structure and above a layer of insulating material, and performing a fin trimming process on an exposed portion of the initial fin structure in the source/drain region so as to produce a reduced-size fin portion positioned above a surface of a layer of insulating material in the source/drain region of the device, wherein the the reduced-size fin portion has a second size that is less than the first size.
    Type: Application
    Filed: May 3, 2017
    Publication date: November 8, 2018
    Inventors: Yi Qi, Jianwei Peng, Hsien-Ching Lo, Kwan-Yong Lim, Hui Zhan
  • Patent number: 10121868
    Abstract: One illustrative method disclosed includes, among other things, forming a gate around an initial fin structure and above a layer of insulating material, and performing a fin trimming process on an exposed portion of the initial fin structure in the source/drain region so as to produce a reduced-size fin portion positioned above a surface of a layer of insulating material in the source/drain region of the device, wherein the the reduced-size fin portion has a second size that is less than the first size. In this example, the method also includes forming a conformal epi semiconductor material on the reduced-size fin portion and forming a conductive source/drain contact structure that is conductively coupled to and wrapped around the conformal epi semiconductor material.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: November 6, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Yi Qi, Jianwei Peng, Hsien-Ching Lo, Kwan-Yong Lim, Hui Zhan
  • Publication number: 20180294348
    Abstract: One illustrative method disclosed includes, among other things, forming a gate structure around a fin and above a layer of insulating material, forming a gate spacer adjacent the gate structure and a fin spacer positioned adjacent the fin above the insulating material, the fin spacer leaving an upper surface of the fin exposed, and performing at least one etching process to remove at least a portion of the fin positioned between the fin spacer, the fin having a recessed upper surface that at least partially defines a fin recess positioned between the fin spacer. In this example, the method further includes forming an epi semiconductor material on the fin recess and removing the fin spacer from adjacent the epi semiconductor material while leaving a portion of the gate spacer in position adjacent the gate structure.
    Type: Application
    Filed: April 10, 2017
    Publication date: October 11, 2018
    Inventors: Ruilong Xie, Christopher M. Prindle, Kwan-Yong Lim