Patents by Inventor Kwangduk Douglas Lee
Kwangduk Douglas Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250149373Abstract: Semiconductor components and systems having substrate contacting surfaces with a reduced hardness are provided. Systems and components include a ceramic, metallic, or non-metallic component for contacting a substrate. Systems and components include a layer of coating material on at least a portion of a substrate contacting surface of the component. Systems and components include where the component for contacting a substrate includes a component Vickers hardness value, and the layer of coating material exhibits a coating layer Vickers hardness value. Systems and components include where the coating layer Vickers hardness value is greater than or about 10% less than the component Vickers hardness value.Type: ApplicationFiled: December 19, 2023Publication date: May 8, 2025Applicant: Applied Materials, Inc.Inventors: Nitin Deepak, Jennifer Sun, Mayur Govind Kulkarni, Miguel S. Fung, Darius "D" Alexander-Jones, Chih Peng, Deenesh Padhi, Kwangduk Douglas Lee, Ganesh Balasubramanian, Juan Carlos Rocha-Alvarez, Simmon Kuo, Nagarajan Rajagopalan, Shankho Sen
-
Publication number: 20250125129Abstract: Exemplary semiconductor processing systems may include a chamber body including sidewalls and a base. The system may include a substrate support extending through the base of the chamber body. The chamber body may define an access circumferentially extending about the substrate support at the base of the chamber body. The system may include one or more isolators disposed within the chamber body. The one or more isolators may define an exhaust path between the one or more isolators and the chamber body. The exhaust path may extend to the base of the chamber body. The systems may include a fluid source fluidly coupled with the chamber body at the access extending about the substrate support.Type: ApplicationFiled: December 19, 2024Publication date: April 17, 2025Applicant: Applied Materials, Inc.Inventors: Sarah Michelle BOBEK, Venkata Sharat Chandra PARIMI, Sungwon HA, Kwangduk Douglas LEE
-
Patent number: 12234549Abstract: Methods for in situ seasoning of process chamber components, such as electrodes are described. In an embodiment, the method includes depositing a silicon oxide film over the process chamber component and converting the silicon oxide film to a silicon-carbon-containing film. The silicon-carbon-containing film forms a protective film over the process chamber components and is resistant to plasma processing and/or dry etch cleaning. The coatings has high density, good emissivity control, and reduces risk of device property drift.Type: GrantFiled: May 5, 2023Date of Patent: February 25, 2025Assignee: Applied Materials, Inc.Inventors: Sarah Michelle Bobek, Abdul Aziz Khaja, Ratsamee Limdulpaiboon, Kwangduk Douglas Lee
-
Patent number: 12211673Abstract: Exemplary semiconductor processing systems may include a chamber body including sidewalls and a base. The system may include a substrate support extending through the base of the chamber body. The chamber body may define an access circumferentially extending about the substrate support at the base of the chamber body. The system may include one or more isolators disposed within the chamber body. The one or more isolators may define an exhaust path between the one or more isolators and the chamber body. The exhaust path may extend to the base of the chamber body. The systems may include a fluid source fluidly coupled with the chamber body at the access extending about the substrate support.Type: GrantFiled: October 22, 2020Date of Patent: January 28, 2025Assignee: Applied Materials, Inc.Inventors: Sarah Michelle Bobek, Venkata Sharat Chandra Parimi, Sungwon Ha, Kwangduk Douglas Lee
-
Patent number: 12211694Abstract: Implementations of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of boron-carbon films on a substrate. In one implementation, a method of processing a substrate is provided. The method comprises flowing a hydrocarbon-containing gas mixture into a processing volume of a processing chamber having a substrate positioned therein, wherein the substrate is heated to a substrate temperature from about 400 degrees Celsius to about 700 degrees Celsius, flowing a boron-containing gas mixture into the processing volume and generating an RF plasma in the processing volume to deposit a boron-carbon film on the heated substrate, wherein the boron-carbon film has an elastic modulus of from about 200 to about 400 GPa and a stress from about ?100 MPa to about 100 MPa.Type: GrantFiled: June 6, 2023Date of Patent: January 28, 2025Assignee: APPLIED MATERIALS, INC.Inventors: Prashant Kumar Kulshreshtha, Ziqing Duan, Karthik Thimmavajjula Narasimha, Kwangduk Douglas Lee, Bok Hoen Kim
-
Publication number: 20250022709Abstract: In one or more embodiments, a method for depositing a carbon hard-mask material by plasma-enhanced chemical vapor deposition (PECVD) includes heating a substrate contained within a process chamber to a temperature in a range from about 100° C. to about 700° C. and producing a plasma with a power generator emitting an RF power of greater than 3 kW. In some examples, the temperature is in a range from about 300° C. to about 700° C. and the RF power is greater than 3 kW to about 7 kW. The method also includes flowing a hydrocarbon precursor into the plasma within the process chamber and forming a carbon hard-mask layer on the substrate at a rate of greater than 5,000 ?/min, such as up to about 10,000 ?/min or faster.Type: ApplicationFiled: September 27, 2024Publication date: January 16, 2025Inventors: Byung Seok KWON, Prashant Kumar KULSHRESHTHA, Kwangduk Douglas LEE, Bushra AFZAL, Sungwon HA, Vinay K. PRABHAKAR, Viren KALSEKAR, Satya THOKACHICHU, Edward P. HAMMOND, IV
-
Patent number: 12191115Abstract: A plasma processing system is described. The system may include a showerhead. The system may further include a first RF generator in electrical communication with the showerhead. The first RF generator may be configured to deliver a first voltage at a first frequency to the showerhead. Additionally, the system may include a second RF generator in electrical communication with a pedestal. The second RF generator may be configured to deliver a second voltage at a second frequency to the pedestal. The second frequency may be less than the first frequency. The system may also include a terminator in electrical communication with the showerhead. The terminator may provide a path to ground for the second voltage. Methods of depositing material using the plasma processing system are described. A method of seasoning a chamber by depositing silicon oxide and silicon nitride on the wall of the chamber is also described.Type: GrantFiled: November 25, 2019Date of Patent: January 7, 2025Assignee: Applied Materials, Inc.Inventors: Venkata Sharat Chandra Parimi, Xiaoquan Min, Zheng John Ye, Prashant Kumar Kulshreshtha, Vinay K Prabhakar, Lu Xu, Kwangduk Douglas Lee
-
Patent number: 12136549Abstract: In one or more embodiments, a method for depositing a carbon hard-mask material by plasma-enhanced chemical vapor deposition (PECVD) includes heating a substrate contained within a process chamber to a temperature in a range from about 100 C to about 700 C and producing a plasma with a power generator emitting an RF power of greater than 3 kW. In some examples, the temperature is in a range from about 300 C to about 700 C and the RF power is greater than 3 kW to about 7 kW. The method also includes flowing a hydrocarbon precursor into the plasma within the process chamber and forming a carbon hard-mask layer on the substrate at a rate of greater than 5,000/min, such as up to about 10,000/min or faster.Type: GrantFiled: March 21, 2019Date of Patent: November 5, 2024Assignee: APPLIED MATERIALS, INC.Inventors: Byung Seok Kwon, Prashant Kumar Kulshreshtha, Kwangduk Douglas Lee, Bushra Afzal, Sungwon Ha, Vinay K. Prabhakar, Viren Kalsekar, Satya Teja Babu Thokachichu, Edward P. Hammond, IV
-
Patent number: 12131913Abstract: Aspects generally relate to methods, systems, and apparatus for processing substrates using one or more amorphous carbon hardmask layers. In one aspect, film stress is altered while facilitating enhanced etch selectivity. In one implementation, a method of processing a substrate includes depositing one or more amorphous carbon hardmask layers onto the substrate, and conducting a rapid thermal anneal operation on the substrate after depositing the one or more amorphous carbon hardmask layers. The rapid thermal anneal operation lasts for an anneal time that is 60 seconds or less. The rapid thermal anneal operation includes heating the substrate to an anneal temperature that is within a range of 600 degrees Celsius to 1,000 degrees Celsius. The method includes etching the substrate after conducting the rapid thermal anneal operation.Type: GrantFiled: June 5, 2023Date of Patent: October 29, 2024Assignee: Applied Materials, Inc.Inventors: Krishna Nittala, Sarah Michelle Bobek, Kwangduk Douglas Lee, Ratsamee Limdulpaiboon, Dimitri Kioussis, Karthik Janakiraman
-
Patent number: 12112949Abstract: Methods and techniques for deposition of amorphous carbon films on a substrate are provided. In one example, the method includes depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further includes implanting a dopant or the inert species into the amorphous carbon film in a second processing region. The implant species, energy, dose & temperature in some combination may be used to enhance the hardmask hardness. The method further includes patterning the doped amorphous carbon film. The method further includes etching the underlayer.Type: GrantFiled: October 10, 2022Date of Patent: October 8, 2024Assignee: Applied Materials, Inc.Inventors: Rajesh Prasad, Sarah Bobek, Prashant Kumar Kulshreshtha, Kwangduk Douglas Lee, Harry Whitesell, Hidetaka Oshio, Dong Hyung Lee, Deven Matthew Raj Mittal, Scott Falk, Venkataramana R. Chavva
-
Patent number: 12100609Abstract: One or more embodiments described herein generally relate to methods for chucking and de-chucking a substrate to/from an electrostatic chuck used in a semiconductor processing system. Generally, in embodiments described herein, the method includes: (1) applying a first voltage from a direct current (DC) power source to an electrode disposed within a pedestal; (2) introducing process gases into a process chamber; (3) applying power from a radio frequency (RF) power source to a showerhead; (4) performing a process on the substrate; (5) stopping application of the RF power; (6) removing the process gases from the process chamber; and (7) stopping applying the DC power.Type: GrantFiled: April 14, 2020Date of Patent: September 24, 2024Assignee: Applied Materials, Inc.Inventors: Sarah Michelle Bobek, Venkata Sharat Chandra Parimi, Prashant Kumar Kulshreshtha, Kwangduk Douglas Lee
-
Patent number: 12040210Abstract: Exemplary semiconductor processing systems include a processing chamber, a power supply, and a chuck disposed at least partially within the processing chamber. The chuck includes a chuck body defining a vacuum port. The chuck also includes first and second coplanar electrodes embedded in the chuck body and connected to the power supply. In some examples, coplanar electrodes include concentric electrodes defining a concentric gap in between. Exemplary semiconductor processing methods may include activating the power supply for the electrostatic chuck to secure a semiconductor substrate on the body of the chuck and/or activating the vacuum port defined by the body of the electrostatic chuck. Some processing can be carried out at increased pressure, while other processing can be carried out at reduced pressure with increased chucking voltage.Type: GrantFiled: October 19, 2020Date of Patent: July 16, 2024Assignee: Applied Materials, Inc.Inventors: Jian Li, Dmitry A. Dzilno, Juan Carlos Rocha-Alvarez, Paul L. Brillhart, Akshay Gunaji, Mayur Govind Kulkarni, Sandeep Bindgi, Sanjay Kamath, Kwangduk Douglas Lee, Zongbin Wang, Yubin Zhang, Yong Xiang Lim
-
Patent number: 12014927Abstract: Methods and techniques for deposition of amorphous carbon films on a substrate are provided. In one example, the method includes depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further includes implanting a dopant or the inert species into the amorphous carbon film in a second processing region. The implant species, energy, dose & temperature in some combination may be used to enhance the hardmask hardness. The method further includes patterning the doped amorphous carbon film. The method further includes etching the underlayer.Type: GrantFiled: October 11, 2022Date of Patent: June 18, 2024Assignee: Applied Materials, Inc.Inventors: Rajesh Prasad, Sarah Bobek, Prashant Kumar Kulshreshtha, Kwangduk Douglas Lee, Harry Whitesell, Hidetaka Oshio, Dong Hyung Lee, Deven Matthew Raj Mittal, Scott Falk, Venkataramana R. Chavva
-
Patent number: 12000048Abstract: Aspects of the present disclosure relate generally to pedestals, components thereof, and methods of using the same for substrate processing chambers. In one implementation, a pedestal for disposition in a substrate processing chamber includes a body. The body includes a support surface. The body also includes a stepped surface that protrudes upwards from the support surface. The stepped surface is disposed about the support surface to surround the support surface. The stepped surface defines an edge ring such that the edge ring is integrated with the pedestal to form the body that is monolithic. The pedestal also includes an electrode disposed in the body, and one or more heaters disposed in the body.Type: GrantFiled: February 20, 2023Date of Patent: June 4, 2024Assignee: Applied Materials, Inc.Inventors: Sarah Michelle Bobek, Venkata Sharat Chandra Parimi, Prashant Kumar Kulshreshtha, Vinay K. Prabhakar, Kwangduk Douglas Lee, Sungwon Ha, Jian Li
-
Publication number: 20230317455Abstract: Implementations of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of boron-carbon films on a substrate. In one implementation, a method of processing a substrate is provided. The method comprises flowing a hydrocarbon-containing gas mixture into a processing volume of a processing chamber having a substrate positioned therein, wherein the substrate is heated to a substrate temperature from about 400 degrees Celsius to about 700 degrees Celsius, flowing a boron-containing gas mixture into the processing volume and generating an RF plasma in the processing volume to deposit a boron-carbon film on the heated substrate, wherein the boron-carbon film has an elastic modulus of from about 200 to about 400 GPa and a stress from about ?100 MPa to about 100 MPa.Type: ApplicationFiled: June 6, 2023Publication date: October 5, 2023Inventors: Prashant Kumar KULSHRESHTHA, Ziqing DUAN, Karthik Thimmavajjula NARASIMHA, Kwangduk Douglas LEE, Bok Hoen KIM
-
Publication number: 20230317463Abstract: Aspects generally relate to methods, systems, and apparatus for processing substrates using one or more amorphous carbon hardmask layers. In one aspect, film stress is altered while facilitating enhanced etch selectivity. In one implementation, a method of processing a substrate includes depositing one or more amorphous carbon hardmask layers onto the substrate, and conducting a rapid thermal anneal operation on the substrate after depositing the one or more amorphous carbon hardmask layers. The rapid thermal anneal operation lasts for an anneal time that is 60 seconds or less. The rapid thermal anneal operation includes heating the substrate to an anneal temperature that is within a range of 600 degrees Celsius to 1,000 degrees Celsius. The method includes etching the substrate after conducting the rapid thermal anneal operation.Type: ApplicationFiled: June 5, 2023Publication date: October 5, 2023Inventors: Krishna NITTALA, Sarah Michelle BOBEK, Kwangduk Douglas LEE, Ratsamee LIMDULPAIBOON, Dimitri KIOUSSIS, Karthik JANAKIRAMAN
-
Publication number: 20230272525Abstract: The present disclosure relates to a method for in situ seasoning of process chamber components, such as electrodes. The method includes depositing a silicon oxide film over the process chamber component and converting the silicon oxide film to a silicon-carbon-containing film. The silicon-carbon-containing film forms a protective film over the process chamber components and is resistant to plasma processing and/or dry etch cleaning. The coatings has high density, good emissivity control, and reduces risk of device property drift.Type: ApplicationFiled: May 5, 2023Publication date: August 31, 2023Inventors: Sarah Michelle BOBEK, Abdul Aziz KHAJA, Ratsamee LIMDULPAIBOON, Kwangduk Douglas LEE
-
Patent number: 11728168Abstract: Implementations of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of boron-carbon films on a substrate. In one implementation, a method of processing a substrate is provided. The method comprises flowing a hydrocarbon-containing gas mixture into a processing volume of a processing chamber having a substrate positioned therein, wherein the substrate is heated to a substrate temperature from about 400 degrees Celsius to about 700 degrees Celsius, flowing a boron-containing gas mixture into the processing volume and generating an RF plasma in the processing volume to deposit a boron-carbon film on the heated substrate, wherein the boron-carbon film has an elastic modulus of from about 200 to about 400 GPa and a stress from about ?100 MPa to about 100 MPa.Type: GrantFiled: April 1, 2021Date of Patent: August 15, 2023Assignee: APPLIED MATERIALS, INC.Inventors: Prashant Kumar Kulshreshtha, Ziqing Duan, Karthik Thimmavajjula Narasimha, Kwangduk Douglas Lee, Bok Hoen Kim
-
Patent number: 11699577Abstract: Exemplary methods of treating a chamber may include delivering a cleaning precursor to a remote plasma unit. The methods may include forming a plasma of the cleaning precursor. The methods may include delivering plasma effluents of the cleaning precursor to a processing region of a semiconductor processing chamber. The processing region may be defined by one or more chamber components. The one or more chamber components may include an oxide coating. The methods may include halting delivery of the plasma effluents. The methods may include treating the oxide coating with a hydrogen-containing material delivered to the processing region subsequent halting delivery of the plasma effluents.Type: GrantFiled: May 25, 2021Date of Patent: July 11, 2023Assignee: Applied Materials, Inc.Inventors: Sarah Michelle Bobek, Ruiyun Huang, Abdul Aziz Khaja, Amit Bansal, Dong Hyung Lee, Ganesh Balasubramanian, Tuan Anh Nguyen, Sungwon Ha, Anjana M. Patel, Ratsamee Limdulpaiboon, Karthik Janakiraman, Kwangduk Douglas Lee
-
Patent number: 11694902Abstract: Aspects generally relate to methods, systems, and apparatus for processing substrates using one or more amorphous carbon hardmask layers. In one aspect, film stress is altered while facilitating enhanced etch selectivity. In one implementation, a method of processing a substrate includes depositing one or more amorphous carbon hardmask layers onto the substrate, and conducting a rapid thermal anneal operation on the substrate after depositing the one or more amorphous carbon hardmask layers. The rapid thermal anneal operation lasts for an anneal time that is 60 seconds or less. The rapid thermal anneal operation includes heating the substrate to an anneal temperature that is within a range of 600 degrees Celsius to 1,000 degrees Celsius. The method includes etching the substrate after conducting the rapid thermal anneal operation.Type: GrantFiled: February 18, 2021Date of Patent: July 4, 2023Assignee: Applied Materials, Inc.Inventors: Krishna Nittala, Sarah Michelle Bobek, Kwangduk Douglas Lee, Ratsamee Limdulpaiboon, Dimitri Kioussis, Karthik Janakiraman