Patents by Inventor Kwo Young

Kwo Young has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10651459
    Abstract: Provided are uniquely structured electrochemically active particles characterized by a first electrochemically active material and a second electrochemically active material disposed about the first material whereby at least the second material includes a modifier present as a continuous transition concentration gradient from the first material into the second material whereby the concentration is lower in the first material than the second material. Also provided are processes of producing the particle and electrochemical cells incorporating the particles as a positive electrode material in a cathode.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: May 12, 2020
    Assignee: BASF Corporation
    Inventors: Kwo Young, William C. Mays, Lixin Wang
  • Patent number: 10587012
    Abstract: Electrolyte compositions comprising a) an ionic liquid and b) a protic acid and/or an organic solvent are suitable for use in electrochemical cells, e.g. metal hydride batteries. The electrolyte compositions may replace the currently employed 30% by weight aqueous KOH. Suitable protic acids include carboxylic acids, mineral acids, sulfonic acids and the like. Suitable organic solvents include organic carbonates, ethers, glymes, ortho esters, polyalkylene glycols, esters, lactones, glycols, formates, sulfones, sulfoxides, amides, alcohols, ketones, nitro solvents, nitrile solvents and combinations thereof. Present batteries may achieve a nominal open-circuit voltage of >1.2 V (volts) and up to about 6 V. The electrolyte compositions allow enlargement of the electrochemical window, thus allowing the use of further cathode active materials.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: March 10, 2020
    Assignee: BASF Corporation
    Inventors: Tiejun Meng, Kwo Young, Diana Wong, Jean Nei
  • Patent number: 10522827
    Abstract: Hydrogen storage negative electrodes based on group IV elements, for example hydrogen storage negative electrodes based on silicon and/or carbon, are highly effective towards reversibly charging/discharging hydrogen in an hydride electrochemical cell.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: December 31, 2019
    Assignee: BASF Corporation
    Inventors: Kwo Young, Tiejun Meng, Michael A. Fetcenko
  • Patent number: 10418628
    Abstract: A multi-phase hydrogen storage alloy comprising a hexagonal Ce2Ni7 phase and a hexagonal Pr5Co19 phase, where the Ce2Ni7 phase abundance is ?30 wt % and the Pr5Co19 phase abundance is ?8 wt % and where the alloy comprises a mischmetal where Nd in the mischmetal is <50 at % or a multi-phase hydrogen storage alloy comprising one or more rare earth elements, a hexagonal Ce2Ni7 phase and a hexagonal Pr5Co19 phase, where the Ce2Ni7 phase abundance is from about 30 to about 72 wt % and the Pr5Co19 phase abundance is ?8 wt % have improved electrochemical performance. The alloys are useful in an electrode in a metal hydride battery, a fuel cell or a metal hydride air battery.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: September 17, 2019
    Assignees: BASF Corporation, FDK Corporation
    Inventors: Kwo Young, Taihei Ouchi, Jean Nei, Diana Wong, Shigekazu Yasuoka
  • Patent number: 10333177
    Abstract: Metal hydride batteries comprising an electrolyte composition which comprises an aqueous solution comprising potassium hydroxide (KOH) and one or more halide and/or oxyacid salts exhibit reduced degradation of the anode material during operation. The salts are for instance alkali metal salts. Anode materials exhibit for instance <100 % of the degradation of the same anode material in the same battery when replacing the electrolyte composition with 30 weight percent (wt %) aqueous KOH and the conductivity of the electrolyte composition is for instance ?85 % of 30 wt % aqueous KOH. Anode materials are for example ABx high capacity hydrogen storage alloys comprising Mg where x is from about 0.5 to about 5 and which has a discharge capacity of ?400 mAh/g.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: June 25, 2019
    Assignee: BASF Corporation
    Inventors: Kwo Young, Shuli Yan, Simon K. Y. Ng
  • Patent number: 10326165
    Abstract: The present application discloses s an electrochemical cell (battery) comprising a hydrogen storage negative electrode (anode), a positive electrode (cathode) and a solid proton-conducting electrolyte in contact with the electrodes. The solid proton-conducting electrolyte comprises a silicon material which comprises at least 35 at % silicon.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: June 18, 2019
    Assignee: BASF Corporation
    Inventors: Kwo Young, Tiejun Meng, Jean Nei, Diana Wong
  • Publication number: 20190097213
    Abstract: Provided are electrochemical cells and methods of their formation that include a negative electrode with a functional protective coating that protects against surface passivation by reducing growth of a passivating layer on the active material surface and that functions synergistically with a silicate containing alkaline electrolyte to reduce thickness of newly formed passivation layers that occur as a result of decrepitation during cycling. The cells and methods have particular advantages of improved cycle life at when exposed to high temperatures.
    Type: Application
    Filed: September 28, 2017
    Publication date: March 28, 2019
    Inventor: Kwo Young
  • Patent number: 10243240
    Abstract: A metal hydride battery comprising at least one negative electrode, at least one positive electrode, a casing having said electrodes positioned therein and an electrolyte composition, where the electrolyte composition comprises an ionic compound selected from the group consisting of protic acids, protic ammonium compounds, protic oxonium compounds, aprotic ammonium compounds, aprotic oxonium compounds, aprotic phosphonium compounds and alkali or alkali earth metal salts; or where the electrolyte composition comprises an ionic compound selected from the group consisting of alkali or alkali earth metal hydroxides and alkali or alkali earth metal alkoxides and an organic solvent; or where the electrolyte composition comprises an alkali metal hydroxide, water and one or more further components selected from the group consisting of organic solvents, further ionic compounds and additives; or where the electrolyte composition comprises an ionic compound selected from the group consisting of carboxylate compounds and
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: March 26, 2019
    Assignee: BASF Corporation
    Inventors: Kwo Young, Jean Nei, Diana Wong, Wentao Li, Lixin Wang
  • Patent number: 10170748
    Abstract: Disclosed is an anode for a lithium battery comprising a body of carbon, such as graphitic carbon, having a layer of a Group IV element or Group IV element-containing substance disposed upon its electrolyte contacting surface. Further disclosed is an anode comprising a body of carbon having an SEI layer formed thereupon by interaction of a layer of Group IV element or Group IV element-containing substance with an electrolyte material during the initial charging of the battery.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: January 1, 2019
    Assignee: Ovonic Battery Company, Inc.
    Inventor: Kwo Young
  • Patent number: 10109855
    Abstract: Hydrogen storage alloys comprising a metal oxide containing ?60 at % oxygen; and/or comprising a metal region adjacent to a boundary region, which boundary region comprises at least one channel; and/or comprising a metal region adjacent to a boundary region, where the boundary region has a length and an average width, where the average width is from about 12 nm to about 1100 nm; and/or comprising a metal oxide zone comprising a metal oxide, which oxide zone is aligned with at least one channel; and/or comprising a Ni/Cr metal oxide have improved electrochemical properties, for instance improved low temperature electrochemical performance.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: October 23, 2018
    Assignee: BASF Corporation
    Inventors: Kwo Young, Diana Wong, Benjamin Chao, Michael A. Fetcenko
  • Patent number: 9972837
    Abstract: A multi-phase hydrogen storage alloy comprising a hexagonal Ce2Ni7 phase and a hexagonal Pr5Co19 phase, where the Ce2Ni7 phase abundance is ?30 wt % and the Pr5Co19 phase abundance is ?8 wt % and where the alloy comprises a mischmetal where Nd in the mischmetal is <50 at % or a multi-phase hydrogen storage alloy comprising one or more rare earth elements, a hexagonal Ce2Ni7 phase and a hexagonal Pr5Co19 phase, where the Ce2Ni7 phase abundance is from about 30 to about 72 wt % and the Pr5Co19 phase abundance is ?8 wt % have improved electrochemical performance. The alloys are useful in an electrode in a metal hydride battery, a fuel cell or a metal hydride air battery.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: May 15, 2018
    Assignees: BASF Corporation, FDK Corporation
    Inventors: Kwo Young, Taihei Ouchi, Jean Nei, Diana Wong, Shigekazu Yasuoka
  • Publication number: 20180131001
    Abstract: A multi-phase hydrogen storage alloy comprising a hexagonal Ce2Ni7 phase and a hexagonal Pr5Co19 phase, where the Ce2Ni7 phase abundance is ?30 wt % and the Pr5Co19 phase abundance is ?8 wt % and where the alloy comprises a mischmetal where Nd in the mischmetal is <50 at % or a multi-phase hydrogen storage alloy comprising one or more rare earth elements, a hexagonal Ce2Ni7 phase and a hexagonal Pr5Co19 phase, where the Ce2Ni7 phase abundance is from about 30 to about 72 wt % and the Pr5Co19 phase abundance is ?8 wt % have improved electrochemical performance. The alloys are useful in an electrode in a metal hydride battery, a fuel cell or a metal hydride air battery.
    Type: Application
    Filed: January 4, 2018
    Publication date: May 10, 2018
    Inventors: Kwo Young, Taihei Ouchi, Jean Nei, Diana Wong, Shigekazu Yasuoka
  • Patent number: 9954222
    Abstract: Heterogeneous metal hydride (MH) compositions comprising a main region comprising a first metal hydride and a secondary region comprising one or more additional components selected from the group consisting of second metal hydrides, metals, metal alloys and further metal compounds are suitable as anode materials for lithium ion cells. The first metal hydride is for example MgH2. Methods for preparing the composition include coating, mechanical grinding, sintering, heat treatment and quenching techniques.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: April 24, 2018
    Assignee: BASF Corporation
    Inventors: Kwo Young, Jean Nei
  • Patent number: 9935315
    Abstract: Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example ?325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: April 3, 2018
    Assignee: BASF Corporation
    Inventors: Kwo Young, Lixin Wang, William Mays, Benjamin Reichman, Hu Chao-Ian, Diana Wong, Jean Nei
  • Patent number: 9899676
    Abstract: Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example ?325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: February 20, 2018
    Assignee: BASF Corporation
    Inventors: Kwo Young, Lixin Wang, William Mays, Benjamin Reichman, Hu Chao-Ian, Diana Wong, Jean Nei
  • Patent number: 9856544
    Abstract: Hydrogen storage alloys comprising a) at least one main phase, b) a storage secondary phase and c) a catalytic secondary phase, where the weight ratio of the catalytic secondary phase abundance to the storage secondary phase abundance is ?3; or comprising a) at least one main phase, b) from 0 to about 13.3 wt % of a storage secondary phase and c) a catalytic secondary phase, where the alloy comprises from 0.05 at % to 0.98 at % of one or more rare earth elements; or comprising a) at least one main phase, b) from 0 to about 13.3 wt % of a storage secondary phase and c) a catalytic secondary phase, where the alloy comprises for example i) one or more elements selected from the group consisting of Ti, Zr, Nb and Hf and ii) one or more elements selected from the group consisting of V, Cr, Mn, Ni, Sn, Al, Co, Cu, Mo, W, Fe, Si, Sn and rare earth elements, where the atomic ratio of ii) to i) is from about 1.80 to about 1.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: January 2, 2018
    Assignee: BASF Corporation
    Inventors: Kwo Young, Diana Wong, Jean Nei
  • Publication number: 20170279154
    Abstract: The present application discloses s an electrochemical cell (battery) comprising a hydrogen storage negative electrode (anode), a positive electrode (cathode) and a solid proton-conducting electrolyte in contact with the electrodes. The solid proton-conducting electrolyte comprises a silicon material which comprises at least 35 at % silicon.
    Type: Application
    Filed: March 7, 2017
    Publication date: September 28, 2017
    Applicant: BASF Corporation
    Inventors: Kwo Young, Tiejun Meng, Jean Nei, Diana Wong
  • Publication number: 20170194634
    Abstract: Provided are uniquely structured electrochemically active particles characterized by a first electrochemically active material and a second electrochemically active material disposed about the first material whereby at least the second material includes a modifier present as a continuous transition concentration gradient from the first material into the second material whereby the concentration is lower in the first material than the second material. Also provided are processes of producing the particle and electrochemical cells incorporating the particles as a positive electrode material in a cathode.
    Type: Application
    Filed: December 6, 2016
    Publication date: July 6, 2017
    Inventors: Kwo Young, William C. Mays, Lixin Wang
  • Publication number: 20160329560
    Abstract: Hydrogen storage negative electrodes based on group IV elements, for example hydrogen storage negative electrodes based on silicon and/or carbon, are highly effective towards reversibly charging/discharging hydrogen in an hydride electrochemical cell.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 10, 2016
    Applicant: BASF Corporation
    Inventors: Kwo Young, Tiejun Meng, Michael A. Fetcenko
  • Patent number: 9490473
    Abstract: Disclosed is an anode for a lithium battery comprising a body of carbon, such as graphitic carbon, having a layer of a Group IV element or Group IV element-containing substance disposed upon its electrolyte contacting surface. Further disclosed is an anode comprising a body of carbon having an SEI layer formed thereupon by interaction of a layer of Group IV element or Group IV element-containing substance with an electrolyte material during the initial charging of the battery.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: November 8, 2016
    Assignee: Ovonic Battery Company, Inc.
    Inventor: Kwo Young