Patents by Inventor Kwo Young

Kwo Young has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160315317
    Abstract: Disclosed is an anode for a lithium battery comprising a body of carbon, such as graphitic carbon, having a layer of a Group IV element or Group IV element-containing substance disposed upon its electrolyte contacting surface. Further disclosed is an anode comprising a body of carbon having an SEI layer formed thereupon by interaction of a layer of Group IV element or Group IV element-containing substance with an electrolyte material during the initial charging of the battery.
    Type: Application
    Filed: July 5, 2016
    Publication date: October 27, 2016
    Inventor: Kwo Young
  • Publication number: 20160285130
    Abstract: Electrolyte compositions comprising a) an ionic liquid and b) a protic acid and/or an organic solvent are suitable for use in electrochemical cells, e.g. metal hydride batteries. The electrolyte compositions may replace the currently employed 30% by weight aqueous KOH. Suitable protic acids include carboxylic acids, mineral acids, sulfonic acids and the like. Suitable organic solvents include organic carbonates, ethers, glymes, ortho esters, polyalkylene glycols, esters, lactones, glycols, formates, sulfones, sulfoxides, amides, alcohols, ketones, nitro solvents, nitrile solvents and combinations thereof. Present batteries may achieve a nominal open-circuit voltage of >1.2 V (volts) and up to about 6 V. The electrolyte compositions allow enlargement of the electrochemical window, thus allowing the use of further cathode active materials.
    Type: Application
    Filed: March 26, 2015
    Publication date: September 29, 2016
    Inventors: Tiejun Meng, Kwo Young, Diana Wong, Jean Nei
  • Publication number: 20160230257
    Abstract: Hydrogen storage alloys comprising a) at least one main phase, b) a storage secondary phase and c) a catalytic secondary phase, where the weight ratio of the catalytic secondary phase abundance to the storage secondary phase abundance is ?3; or comprising a) at least one main phase, b) from 0 to about 13.3 wt % of a storage secondary phase and c) a catalytic secondary phase, where the alloy comprises from 0.05 at % to 0.98 at % of one or more rare earth elements; or comprising a) at least one main phase, b) from 0 to about 13.3 wt % of a storage secondary phase and c) a catalytic secondary phase, where the alloy comprises for example i) one or more elements selected from the group consisting of Ti, Zr, Nb and Hf and ii) one or more elements selected from the group consisting of V, Cr, Mn, Ni, Sn, Al, Co, Cu, Mo, W, Fe, Si, Sn and rare earth elements, where the atomic ratio of ii) to i) is from about 1.80 to about 1.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 11, 2016
    Inventors: Kwo Young, Diana Wong, Jean Nei
  • Publication number: 20160233495
    Abstract: Hydrogen storage alloys comprising a) at least one electrochemically active main phase and b) at least one electrochemically active secondary phase; and/or comprising a) at least one main phase, b) a storage secondary phase comprising one or more rare earth elements and c) a catalytic secondary phase, where the abundance of the storage secondary phase is >0.5 wt % and the abundance of the catalytic secondary phase is from about 0.3 to about 15 wt %, based on the alloy; exhibit improved electrochemical properties, for example improved low temperature electrochemical properties.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 11, 2016
    Inventors: Kwo Young, Diana Wong, Benjamin Reichman
  • Publication number: 20160230255
    Abstract: Hydrogen storage alloys comprising a) at least one main phase, b) a storage secondary phase and c) a catalytic secondary phase, where the weight ratio of the catalytic secondary phase abundance to the storage secondary phase abundance is ?3; or comprising a) at least one main phase, b) from 0 to about 13.3 wt % of a storage secondary phase and c) a catalytic secondary phase, where the alloy comprises from 0.05 at % to 0.98 at % of one or more rare earth elements; or comprising a) at least one main phase, b) from 0 to about 13.3 wt % of a storage secondary phase and c) a catalytic secondary phase, where the alloy comprises for example i) one or more elements selected from the group consisting of Ti, Zr, Nb and Hf and ii) one or more elements selected from the group consisting of V, Cr, Mn, Ni, Sn, Al, Co, Cu, Mo, W, Fe, Si, Sn and rare earth elements, where the atomic ratio of ii) to i) is from about 1.80 to about 1.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 11, 2016
    Inventors: Kwo Young, Diana Wong, Jean Nei
  • Publication number: 20160233494
    Abstract: Hydrogen storage alloys comprising a) at least one electrochemically active main phase and b) at least one electrochemically active secondary phase; and/or comprising a) at least one main phase, b) a storage secondary phase comprising one or more rare earth elements and c) a catalytic secondary phase, where the abundance of the storage secondary phase is >0.5 wt % and the abundance of the catalytic secondary phase is from about 0.3 to about 15 wt %, based on the alloy; exhibit improved electrochemical properties, for example improved low temperature electrochemical properties.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 11, 2016
    Inventors: Kwo Young, Diana Wong, Benjamin Reichman
  • Publication number: 20160230253
    Abstract: Hydrogen storage alloys comprising a) at least one main phase, b) a storage secondary phase and c) a catalytic secondary phase, where the weight ratio of the catalytic secondary phase abundance to the storage secondary phase abundance is ?3; or comprising a) at least one main phase, b) from 0 to about 13.3 wt % of a storage secondary phase and c) a catalytic secondary phase, where the alloy comprises from 0.05 at % to 0.98 at % of one or more rare earth elements; or comprising a) at least one main phase, b) from 0 to about 13.3 wt % of a storage secondary phase and c) a catalytic secondary phase, where the alloy comprises for example i) one or more elements selected from the group consisting of Ti, Zr, Nb and Hf and ii) one or more elements selected from the group consisting of V, Cr, Mn, Ni, Sn, Al, Co, Cu, Mo, W, Fe, Si, Sn and rare earth elements, where the atomic ratio of ii) to i) is from about 1.80 to about 1.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 11, 2016
    Inventors: Kwo Young, Diana Wong, Jean Nei
  • Publication number: 20160233499
    Abstract: Hydrogen storage alloys comprising a metal oxide containing ?60 at % oxygen; and/or comprising metal regions separated by a boundary region, which boundary region comprises at least one channel; and/or comprising metal regions separated by a boundary region, where the boundary region has a length and an average width, where the average width is from about 12 nm to about 1100 nm; and/or comprising a metal oxide zone comprising a metal oxide, which oxide zone is aligned with at least one channel; and/or comprising a Ni/Cr metal oxide have improved electrochemical properties, for instance improved low temperature electrochemical performance.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 11, 2016
    Inventors: Kwo Young, Diana Wong, Benjamin Chao, Michael A. Fetcenko
  • Publication number: 20160233496
    Abstract: Hydrogen storage alloys comprising a metal oxide containing?60 at % oxygen; and/or comprising metal regions separated by a boundary region, which boundary region comprises at least one channel; and/or comprising metal regions separated by a boundary region, where the boundary region has a length and an average width, where the average width is from about 12 nm to about 1100 nm; and/or comprising a metal oxide zone comprising a metal oxide, which oxide zone is aligned with at least one channel; and/or comprising a Ni/Cr metal oxide have improved electrochemical properties, for instance improved low temperature electrochemical performance.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 11, 2016
    Inventors: Kwo Young, Diana Wong, Benjamin Chao, Michael A. Fetcenko
  • Publication number: 20160233493
    Abstract: Hydrogen storage alloys comprising a) at least one electrochemically active main phase and b) at least one electrochemically active secondary phase; and/or comprising a) at least one main phase, b) a storage secondary phase comprising one or more rare earth elements and c) a catalytic secondary phase, where the abundance of the storage secondary phase is >0.5 wt % and the abundance of the catalytic secondary phase is from about 0.3 to about 15 wt %, based on the alloy; exhibit improved electrochemical properties, for example improved low temperature electrochemical properties.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 11, 2016
    Inventors: Kwo Young, Diana Wong, Benjamin Reichman
  • Publication number: 20160233498
    Abstract: Hydrogen storage alloys comprising a metal oxide containing ?60 at % oxygen; and/or comprising metal regions separated by a boundary region, which boundary region comprises at least one channel; and/or comprising metal regions separated by a boundary region, where the boundary region has a length and an average width, where the average width is from about 12 nm to about 1100 nm; and/or comprising a metal oxide zone comprising a metal oxide, which oxide zone is aligned with at least one channel; and/or comprising a Ni/Cr metal oxide have improved electrochemical properties, for instance improved low temperature electrochemical performance.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 11, 2016
    Inventors: Kwo Young, Diana Wong, Benjamin Chao, Michael A. Fetcenko
  • Publication number: 20160233497
    Abstract: Hydrogen storage alloys comprising a metal oxide containing ?60 at % oxygen; and/or comprising a metal region adjacent to a boundary region, which boundary region comprises at least one channel; and/or comprising a metal region adjacent to a boundary region, where the boundary region has a length and an average width, where the average width is from about 12 nm to about 1100 nm; and/or comprising a metal oxide zone comprising a metal oxide, which oxide zone is aligned with at least one channel; and/or comprising a Ni/Cr metal oxide have improved electrochemical properties, for instance improved low temperature electrochemical performance.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 11, 2016
    Inventors: Kwo Young, Diana Wong, Benjamin Chao, Michael A. Fetcenko
  • Publication number: 20160230254
    Abstract: Hydrogen storage alloys comprising a) at least one main phase, b) a storage secondary phase and c) a catalytic secondary phase, where the weight ratio of the catalytic secondary phase abundance to the storage secondary phase abundance is ?3; or comprising a) at least one main phase, b) from 0 to about 13.3 wt % of a storage secondary phase and c) a catalytic secondary phase, where the alloy comprises from 0.05 at % to 0.98 at % of one or more rare earth elements; or comprising a) at least one main phase, b) from 0 to about 13.3 wt % of a storage secondary phase and c) a catalytic secondary phase, where the alloy comprises for example i) one or more elements selected from the group consisting of Ti, Zr, Nb and Hf and ii) one or more elements selected from the group consisting of V, Cr, Mn, Ni, Sn, Al, Co, Cu, Mo, W, Fe, Si, Sn and rare earth elements, where the atomic ratio of ii) to i) is from about 1.80 to about 1.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 11, 2016
    Inventors: Kwo Young, Diana Wong, Jean Nei
  • Publication number: 20160233506
    Abstract: Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example ?325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.
    Type: Application
    Filed: February 5, 2015
    Publication date: August 11, 2016
    Inventors: Kwo Young, Lixin Wang, William Mays, Benjamin Reichman, Hu Chao-Ian, Diana Wong, Jean Nei
  • Publication number: 20160233500
    Abstract: Hydrogen storage alloys comprising a metal oxide containing ?60 at % oxygen; and/or comprising metal regions separated by a boundary region, which boundary region comprises at least one channel; and/or comprising metal regions separated by a boundary region, where the boundary region has a length and an average width, where the average width is from about 12 nm to about 1100 nm; and/or comprising a metal oxide zone comprising a metal oxide, which oxide zone is aligned with at least one channel; and/or comprising a Ni/Cr metal oxide have improved electrochemical properties, for instance improved low temperature electrochemical performance.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 11, 2016
    Inventors: Kwo Young, Diana Wong, Benjamin Chao, Michael A. Fetcenko
  • Publication number: 20160233505
    Abstract: Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example ?325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.
    Type: Application
    Filed: February 5, 2015
    Publication date: August 11, 2016
    Inventors: Kwo Young, Lixin Wang, William Mays, Benjamin Reichman, Hu Chao-Ian, Diana Wong, Jean Nei
  • Publication number: 20160204429
    Abstract: A hydrogen storage alloy having a higher electrochemical hydrogen storage capacity than that predicted by the alloy's gaseous hydrogen storage capacity at 2 MPa. The hydrogen storage alloy may have an electrochemical hydrogen storage capacity 5 to 15 times higher than that predicted by the maximum gaseous phase hydrogen storage capacity thereof. The hydrogen storage alloy may be selected from alloys of the group consisting of A2B, AB, AB2, AB3, A2B7, AB5 and AB9. The hydrogen storage alloy may further be selected from the group consisting of: a) Zr(VxNi4.5-x); wherein 0<x?0.5; and b) Zr(VxNi3.5-x); wherein 0<x?0.9.
    Type: Application
    Filed: March 22, 2016
    Publication date: July 14, 2016
    Inventors: Kwo Young, Taihei Ouchi, Jean Nei
  • Publication number: 20160172676
    Abstract: Heterogeneous metal hydride (MH) compositions comprising a main region comprising a first metal hydride and a secondary region comprising one or more additional components selected from the group consisting of second metal hydrides, metals, metal alloys and further metal compounds are suitable as anode materials for lithium ion cells. The first metal hydride is for example MgH2. Methods for preparing the composition include coating, mechanical grinding, sintering, heat treatment and quenching techniques.
    Type: Application
    Filed: April 22, 2015
    Publication date: June 16, 2016
    Inventors: Kwo Young, Jean Nei
  • Publication number: 20160172669
    Abstract: Heterogeneous metal hydride (MH) compositions comprising a main region comprising a first metal hydride and a secondary region comprising one or more additional components selected from the group consisting of second metal hydrides, metals, metal alloys and further metal compounds are suitable as anode materials for lithium ion cells. The first metal hydride is for example MgH2. Methods for preparing the composition include coating, mechanical grinding, sintering, heat treatment and quenching techniques.
    Type: Application
    Filed: April 22, 2015
    Publication date: June 16, 2016
    Inventors: Kwo Young, Jean Nei
  • Patent number: 9350014
    Abstract: The performance of an ABx type metal hydride alloy is improved by adding an element to the alloy which element is operative to enhance the surface area morphology of the alloy. The alloy may include surface regions of differing morphologies.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: May 24, 2016
    Assignee: Ovonic Battery Company, Inc.
    Inventors: Kwo Young, Benjamin Reichman, Michael A. Fetcenko