Patents by Inventor Kwok Keung Paul Ho

Kwok Keung Paul Ho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11696509
    Abstract: The present disclosure provides a flexible electric generator and methods for fabricating the same. The flexible electric generator comprises a flexible triboelectric layer covering the electrode layer of a flexible piezoelectric generator that enhances output power by combining piezoelectric effect and triboelectric effect. The reliability of the flexible electric generator under bending is also improved due to the presence of the flexible triboelectric layer. The fabrication methods of the disclosed flexible electric generators are simple, thereby enabling large-scale manufacturing.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: July 4, 2023
    Assignee: Nano and Advanced Materials Institute Limited
    Inventors: Han Wang, Qingyi Yang, Jianjun Song, Kwok Keung Paul Ho, Jifan Li
  • Patent number: 11472926
    Abstract: The present invention provides new impact protection materials and the method of making the same. More specifically, the impact protection materials are polymer-based shear-thickening composite comprising a non-shear-thickening polymer matrix material and one or more shear-thickening materials. Preferably, the non-shear-thickening polymer matrix material is in an amount from approximately 5 weight percent to approximately 90 weight percent with the balance being one or more shear-thickening materials. The first type of the one or more shear-thickening materials is sol-gel based shear-thickening material in which small inorganic particles are connected in a gel network; the second type is polymer-based shear-thickening material in which polymer chains form network. Compared to the existing shear-thickening materials, the present shear-thickening materials have different molecular structure and formulation and possess properties of good impact protection and good stability.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: October 18, 2022
    Assignee: Nano and Advanced Materials Institute Limited
    Inventors: Jianjun Song, Kwok Keung Paul Ho, Han Wang, Kang Zhang, Liang Zhang, Cheng Chen, Sze Kui Lam
  • Publication number: 20200239640
    Abstract: The present invention provides new impact protection materials and the method of making the same. More specifically, the impact protection materials are polymer-based shear-thickening composite comprising a non-shear-thickening polymer matrix material and one or more shear-thickening materials. Preferably, the non-shear-thickening polymer matrix material is in an amount from approximately 5 weight percent to approximately 90 weight percent with the balance being one or more shear-thickening materials. The first type of the one or more shear-thickening materials is sol-gel based shear-thickening material in which small inorganic particles are connected in a gel network; the second type is polymer-based shear-thickening material in which polymer chains form network. Compared to the existing shear-thickening materials, the present shear-thickening materials have different molecular structure and formulation and possess properties of good impact protection and good stability.
    Type: Application
    Filed: October 10, 2018
    Publication date: July 30, 2020
    Inventors: Jianjun SONG, Kwok Keung Paul HO, Han WANG, Kang ZHANG, Liang ZHANG, Cheng CHEN, Sze Kui LAM
  • Publication number: 20200168788
    Abstract: The present disclosure provides a flexible electric generator and methods for fabricating the same. The flexible electric generator comprises a flexible triboelectric layer covering the electrode layer of a flexible piezoelectric generator that enhances output power by combining piezoelectric effect and triboelectric effect. The reliability of the flexible electric generator under bending is also improved due to the presence of the flexible triboelectric layer. The fabrication methods of the disclosed flexible electric generators are simple, thereby enabling large-scale manufacturing.
    Type: Application
    Filed: November 25, 2019
    Publication date: May 28, 2020
    Inventors: Han WANG, Qingyi YANG, Jianjun SONG, Kwok Keung, Paul HO, Jifan LI
  • Patent number: 10572089
    Abstract: A flexible transparent sensing film with embedded electrodes is described in the present invention, which would greatly improve the optical transmittance, electrical conductivity and reliability. The present sensing film can also simultaneously enable multiple touches for distinct locations sensing and at least another set of electrical signal sensing. The present sensing film includes a top conductive electrode, a bottom conductive electrode and a dielectric substrate or a functional substrate that would generate electrical signal response due to a specific input such as motion, light, chemical, or temperature. The present sensing film apparatus could be configured to have the top and bottom conductive electrodes which are partially or fully embedded onto the surfaces of the dielectric and/or functional substrates.
    Type: Grant
    Filed: September 29, 2018
    Date of Patent: February 25, 2020
    Assignees: MIND TECHNOLOGY DEVELOPMENT LIMITED, NEW ASIA GROUP HOLDINGS LIMITED
    Inventors: Chung Pui Chan, Wing Hong Choi, Lai Fan Lai, Kwok Keung Paul Ho, Chien Chung
  • Patent number: 10385250
    Abstract: A method of preparing a thermally conductive composite including: a) mixing 15% to 60% by weight of a polymer matrix with 0% to 85% by weight of a high-aspect-ratio thermally conductive filler having an aspect ratio of at least 5:1; and (b) mixing a polymer melt obtained from step (a) with 0% to 85% by weight of a low-aspect-ratio thermally conductive filler having an aspect ratio of 2:1 or less. By changing the weight ratio, the structure and mechanical properties of the low-aspect-ratio thermally conductive filler and the high-aspect-ratio thermally conductive filler, thermal conductivity anisotropy can be tuned. A thermally conductive composite having thermal conductivity anisotropy in the range from 1 to 4 is also disclosed.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: August 20, 2019
    Assignee: Nano and Advanced Materials Institute Limited
    Inventors: Haojun Zhu, Changbao Ren, Lai To Leung, Kwok Keung Paul Ho
  • Patent number: 10329660
    Abstract: The present invention provides a transparent conductive thin film which is flexible for suiting substantially all kinds of electronic and optoelectronic devices or display panel. The present conductive thin film includes at least one transparent substrate, a deformable layer and a conductive network pattern having a high aspect ratio such that at least one surface of the conductive network being exposed out of the deformable layer or the transparent substrate for contacting with an external structure while a large proportion thereof stays firmly integrated into the substrate. The present invention also relates to methods of fabricating a transparent conductive thin film including the structural features of the transparent conductive thin film of the present invention. Various optimizations of the present methods are also provided in the present invention for facilitating large area thin film fabrication and large scale production.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: June 25, 2019
    Assignees: MIND TECHNOLOGY DEVELOPMENT LIMITED, NEW ASIA GROUP HOLDINGS LIMITED
    Inventors: Chung Pui Chan, Lai Fan Lai, Wing Hong Choi, Bin Zhang, Kwok Keung Paul Ho, Chien Chung, Chun Pong Lee
  • Publication number: 20190034008
    Abstract: A flexible transparent sensing film with embedded electrodes is described in the present invention, which would greatly improve the optical transmittance, electrical conductivity and reliability. The present sensing film can also simultaneously enable multiple touches for distinct locations sensing and at least another set of electrical signal sensing. The present sensing film includes a top conductive electrode, a bottom conductive electrode and a dielectric substrate or a functional substrate that would generate electrical signal response due to a specific input such as motion, light, chemical, or temperature. The present sensing film apparatus could be configured to have the top and bottom conductive electrodes which are partially or fully embedded onto the surfaces of the dielectric and/or functional substrates.
    Type: Application
    Filed: September 29, 2018
    Publication date: January 31, 2019
    Inventors: Chung Pui CHAN, Wing Hong CHOI, Lai Fan LAI, Kwok Keung Paul HO, Chien Chung
  • Patent number: 10103282
    Abstract: The present invention provides transparent semiconducting films for constructing a translucent electrode that possess a high transparency and low sheet resistance. Further, the transparent semiconducting films have a high light diffusion property, which is capable to be a translucent front/back electrode in a light-emitting device for improving the light emission efficiency and a front/intermediate/back electrode in a multi-junction solar cell for improving the light trapping effect. Related fabrication method and how they are applied in different fields are also provided in the present invention.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: October 16, 2018
    Assignee: Nano and Advanced Materials Institute Limited
    Inventors: Chung Pui Chan, Wing Hong Choi, Kwok Keung Paul Ho
  • Publication number: 20180291498
    Abstract: The present invention provides a transparent conductive thin film which is flexible for suiting substantially all kinds of electronic and optoelectronic devices or display panel. The present conductive thin film includes at least one transparent substrate, a deformable layer and a conductive network pattern having a high aspect ratio such that at least one surface of the conductive network being exposed out of the deformable layer or the transparent substrate for contacting with an external structure while a large proportion thereof stays firmly integrated into the substrate. The present invention also relates to methods of fabricating a transparent conductive thin film including the structural features of the transparent conductive thin film of the present invention. Various optimizations of the present methods are also provided in the present invention for facilitating large area thin film fabrication and large scale production.
    Type: Application
    Filed: July 12, 2017
    Publication date: October 11, 2018
    Inventors: Chung Pui Chan, Lai Fan Lai, Wing Hong Choi, Bin Zhang, Kwok Keung Paul Ho, Chien Chung, Chun Pong Lee
  • Publication number: 20180114982
    Abstract: Lithium manganese oxide material used in lithium ion battery is disclosed herein. The lithium manganese oxide material may be doped with suitable dopant. The lithium manganese oxide material may be represented by a first formula of Li1+xMyMn2?y?xO4, wherein the value of ‘x’, in the first formula, satisfies a relation ?0.1<x<0.3 and the value of ‘y’, in the first formula, satisfies a relation a relation 0?y?0.2. The lithium manganese oxide material may further be coated with a shell capping layer. The shell capping layer may be made of a carbon or a compound having a second formula, Li1+xMyMn2?y?xO4. In an aspect, the value of ‘x’, in the second formula, may satisfy a relation ?0.1<x<0.3. Further, the value of ‘y’, in the second formula, may satisfy a relation 0?y?0.2.
    Type: Application
    Filed: October 24, 2016
    Publication date: April 26, 2018
    Inventors: Yeming Xu, Quanda Zhang, Kwok Keung Paul Ho
  • Publication number: 20180083161
    Abstract: The present invention provides transparent semiconducting films for constructing a translucent electrode that possess a high transparency and low sheet resistance. Further, the transparent semiconducting films have a high light diffusion property, which is capable to be a translucent front/back electrode in a light-emitting device for improving the light emission efficiency and a front/intermediate/back electrode in a multi-junction solar cell for improving the light trapping effect. Related fabrication method and how they are applied in different fields are also provided in the present invention.
    Type: Application
    Filed: September 13, 2017
    Publication date: March 22, 2018
    Inventors: Chung Pui CHAN, Wing Hong CHOI, Kwok Keung Paul HO
  • Publication number: 20170355894
    Abstract: A method of preparing a thermally conductive composite including: a) mixing 15% to 60% by weight of a polymer matrix with 0% to 85% by weight of a high-aspect-ratio thermally conductive filler having an aspect ratio of at least 5:1; and (b) mixing a polymer melt obtained from step (a) with 0% to 85% by weight of a low-aspect-ratio thermally conductive filler having an aspect ratio of 2:1 or less. By changing the weight ratio, the structure and mechanical properties of the low-aspect-ratio thermally conductive filler and the high-aspect-ratio thermally conductive filler, thermal conductivity anisotropy can be tuned. A thermally conductive composite having thermal conductivity anisotropy in the range from 1 to 4 is also disclosed.
    Type: Application
    Filed: June 12, 2017
    Publication date: December 14, 2017
    Inventors: Haojun Zhu, Changbao Ren, Lai To Leung, Kwok Keung Paul Ho
  • Patent number: 9666906
    Abstract: The present application discloses a high voltage electrolyte including an electrolyte solvent which includes a mixture of a dinitrile solvent and a nitrile solvent and is stable at voltage of about 5 V or above. The dinitrile solvent may include at least one selected from the group consisting of malononitrile, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, suberonitrile, azelanitrile and sebaconitrile. The nitrile solvent may include at least one selected from the group consisting of acetonitrile, propionitrile, butyronitrile, pivalonitrile and capronitrile. The present application also discloses a lithium ion battery including the above high voltage electrolyte. The lithium ion battery exhibits a cyclic performance of greater than about 300 cycles and with a capacity retention of greater than about 80%.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: May 30, 2017
    Assignee: NANO AND ADVANCED MATERIALS INSTITUTE LIMITED
    Inventors: Kam Piu Ho, Kwok Keung Paul Ho, Ranshi Wang, Yeming Xu, Wai Chun Luk, Mei Mei Hsu
  • Patent number: 9637384
    Abstract: The present invention relates to new fullerene derivatives of formulae 1a-d, 2 and 3: method of synthesizing said derivatives, and applications thereof in organic photovoltaics, e.g., organic solar cells. In particular, the fullerene derivatives of the present invention are soluble in non-halogenated solvents such that an environmental-friendly and low-cost fabrication method for industrialization of solar cell based on the new fullerene derivatives is provided. An ink formulation for forming a thin film on a substrate of organic photovoltaics comprising at least one of the fullerene derivatives of the present invention is also provided. Greater than 3% power conversion efficiency of the organic solar cells (area=0.16 cm2) formed based on the fullerene derivatives of the present invention with less pollution and lower cost in fabrication can be achieved in the present invention.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: May 2, 2017
    Assignee: NANO AND ADVANCED MATERIALS INSTITUTE LIMITED
    Inventors: Wing Leung Wong, Lai To Leung, Liang Zhang, Chi Mei Chow, Haojun Zhu, Lai Fan Lai, Kwok Keung Paul Ho
  • Patent number: 9371979
    Abstract: The present invention provides an enhanced light out-coupling device for extraction of light radiation from a light source. The enhanced light out-coupling device comprises a grid having a plurality of channels, a reflective material layer coated on the grid, and a high refractive index fluid layer. In addition, the grid can be filled with phosphor particles for light converting. The device of the presently claimed invention is able to effectively avoid the scattering problem generated from the sapphire substrate and phosphor particles, as well as reduce light adsorption by the array of grid during the light extraction, leading to better image quality.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: June 21, 2016
    Assignee: NANO AND ADVANCED MATERIALS INSTITUTE LIMITED
    Inventors: Tsang Ming Michael Choi, Yuen Yan Gena Tsang, Kwok Keung Paul Ho
  • Publication number: 20160126505
    Abstract: The present invention relates to a method for fabricating a solution-processed PLED including an electron transport layer. The electron transport layer, deposited on an emission layer by a solution process, provides the performance comparable to those processed by vacuum deposition. In addition, the method of the present invention is able to lower manufacturing cost and reduce time for fabrication.
    Type: Application
    Filed: October 30, 2014
    Publication date: May 5, 2016
    Inventors: Tsang Ming Michael CHOI, Tsz Kiu Brian LO, Kwok Keung Paul HO
  • Publication number: 20160039676
    Abstract: The present invention relates to new fullerene derivatives of formulae 1a-d, 2 and 3: method of synthesizing said derivatives, and applications thereof in organic photovoltaics, e.g., organic solar cells. In particular, the fullerene derivatives of the present invention are soluble in non-halogenated solvents such that an environmental-friendly and low-cost fabrication method for industrialization of solar cell based on the new fullerene derivatives is provided. An ink formulation for forming a thin film on a substrate of organic photovoltaics comprising at least one of the fullerene derivatives of the present invention is also provided. Greater than 3% power conversion efficiency of the organic solar cells (area=0.16 cm2) formed based on the fullerene derivatives of the present invention with less pollution and lower cost in fabrication can be achieved in the present invention.
    Type: Application
    Filed: July 14, 2015
    Publication date: February 11, 2016
    Inventors: Wing Leung WONG, Lai To LEUNG, Liang ZHANG, Chi Mei CHOW, Haojun ZHU, Lai Fan LAI, Kwok Keung Paul HO
  • Publication number: 20150333373
    Abstract: The present application discloses a high voltage electrolyte including an electrolyte solvent which includes a mixture of a dinitrile solvent and a nitrile solvent and is stable at voltage of about 5 V or above. The dinitrile solvent may include at least one selected from the group consisting of malononitrile, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, suberonitrile, azelanitrile and sebaconitrile. The nitrile solvent may include at least one selected from the group consisting of acetonitrile, propionitrile, butyronitrile, pivalonitrile and capronitrile. The present application also discloses a lithium ion battery including the above high voltage electrolyte. The lithium ion battery exhibits a cyclic performance of greater than about 300 cycles and with a capacity retention of greater than about 80%.
    Type: Application
    Filed: May 12, 2015
    Publication date: November 19, 2015
    Inventors: Kam Piu Ho, Kwok Keung Paul Ho, Ranshi Wang, Yeming Xu, Wai Chun Luk, Mei Mei Hsu
  • Publication number: 20150233004
    Abstract: The present invention relates to a process for recovering metals from indium tin oxide (ITO) scrap. It allows the selective recovery of indium and tin from waste ITO by means of a simple and environmentally benign dissolution-deposition method, with no requirement of using strong corrosive acid/alkaline chemicals (e.g. hydrochloric acid, nitric acid, sulfuric acid and sodium hydroxide) for dissolution and complicated procedures/operation. The dissolution baths can be reused without observable recovery deterioration. It significantly reduces the cost requirement in the recovery process.
    Type: Application
    Filed: January 20, 2015
    Publication date: August 20, 2015
    Inventors: Kam Piu HO, Kwok Keung Paul HO, Ranshi WANG, Fulin ZHENG