Patents by Inventor Kwong Hon Wong

Kwong Hon Wong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8680651
    Abstract: Techniques for incorporating nanotechnology into decoupling capacitor designs are provided. In one aspect, a decoupling capacitor is provided. The decoupling capacitor comprises a first electrode; an intermediate layer adjacent to the first electrode having a plurality of nanochannels therein; a conformal dielectric layer formed over the intermediate layer and lining the nanochannels; and a second electrode at least a portion of which is formed from an array of nanopillars that fill the nanochannels in the intermediate layer. Methods for fabricating the decoupling capacitor are also provided, as are semiconductor devices incorporating the decoupling capacitor design.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: March 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Satya N. Chakravarti, Dechao Guo, Huiming Bu, Keith Kwong Hon Wong
  • Patent number: 8680646
    Abstract: A device and method for device fabrication include forming a buried gate electrode in a dielectric substrate and patterning a stack having a high dielectric constant layer, a carbon-based semi-conductive layer and a protection layer over the buried gate electrode. An isolation dielectric layer formed over the stack is opened to define recesses in regions adjacent to the stack. The recesses are etched to form cavities and remove a portion of the high dielectric constant layer to expose the carbon-based semi-conductive layer on opposite sides of the buried gate electrode. A conductive material is deposited in the cavities to form self-aligned source and drain regions.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: March 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Dechao Guo, Shu-Jen Han, Keith Kwong Hon Wong, Jun Yuan
  • Publication number: 20140070293
    Abstract: A memory device, and a method of forming a memory device, is provided that includes a capacitor with a lower electrode of a metal semiconductor alloy. In one embodiment, the memory device includes a trench present in a semiconductor substrate including a semiconductor on insulating (SOI) layer on top of a buried dielectric layer, wherein the buried dielectric layer is on top of a base semiconductor layer. A capacitor is present in the trench, wherein the capacitor includes a lower electrode of a metal semiconductor alloy having an upper edge that is self-aligned to the upper surface of the base semiconductor layer, a high-k dielectric node layer, and an upper electrode of a metal. The memory device further includes a pass transistor in electrical communication with the capacitor.
    Type: Application
    Filed: November 14, 2013
    Publication date: March 13, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Zhengwen Li, Damon B. Farmer, Michael P. Chudzik, Chengwen Pei, Keith Kwong Hon Wong, Jian Yu, Zhen Zhang
  • Patent number: 8664075
    Abstract: A dual node dielectric trench capacitor includes a stack of layers formed in a trench. The stack of layers include, from bottom to top, a first conductive layer, a first node dielectric layer, a second conductive layer, a second node dielectric layer, and a third conductive layer. The dual node dielectric trench capacitor includes two back-to-back capacitors, which include a first capacitor and a second capacitor. The first capacitor includes the first conductive layer, the first node dielectric layer, the second conductive layer, and the second capacitor includes the second conductive layer, the second node dielectric layer, and the third conductive layer. The dual node dielectric trench capacitor can provide about twice the capacitance of a trench capacitor employing a single node dielectric layer having a comparable composition and thickness as the first and second node dielectric layers.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: March 4, 2014
    Assignee: International Business Machines Corporation
    Inventors: Keith Kwong Hon Wong, Ramachandra Divakaruni, Roger A. Booth, Jr.
  • Publication number: 20140048927
    Abstract: Structure and methods for forming a semiconductor structure. The semiconductor structure includes a plurality of layers comprising at least one copper interconnect layer. The copper interconnect layer provides an electrical conduit between one of physically adjacent layers in the semiconductor structure and an integrated circuit in the semiconductor structure and an electronic device. A plurality of studs is positioned within the at least one copper interconnect layer. The studs are spaced apart by a distance less than or equal to a Blech length of the at least one copper interconnect layer. The Blech length is a length below which damage due to electromigration of metal atoms within the at least one copper interconnect layer does not occur. The plurality of studs comprises copper atom diffusion barriers.
    Type: Application
    Filed: August 17, 2012
    Publication date: February 20, 2014
    Applicant: International Business Machines Corporation
    Inventors: Chad M. Burke, Baozhen Li, Keith Kwong Hon Wong, Chih-Chao Yang
  • Patent number: 8653602
    Abstract: A transistor is fabricated by removing a polysilicon gate over a doped region of a substrate and forming a mask layer over the substrate such that the doped region is exposed through a hole within the mask layer. An interfacial layer is deposited on top and side surfaces of the mask layer and on a top surface of the doped region. A layer adapted to reduce a threshold voltage of the transistor and/or reduce a thickness of an inversion layer of the transistor is deposited on the interfacial layer. The layer includes metal, such as aluminum or lanthanum, which diffuses into the interfacial layer, and also includes oxide, such as hafnium oxide. A conductive plug, such as a metal plug, is formed within the hole of the mask layer. The interfacial layer, the layer on the interfacial layer, and the conductive plug are a replacement gate of the transistor.
    Type: Grant
    Filed: September 11, 2010
    Date of Patent: February 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Dechao Guo, Keith Kwong Hon Wong
  • Publication number: 20140042561
    Abstract: In a replacement gate scheme, a continuous material layer is deposited on a bottom surface and a sidewall surface in a gate cavity. A vertical portion of the continuous material layer is removed to form a gate component of which a vertical portion does not extend to a top of the gate cavity. The gate component can be employed as a gate dielectric or a work function material portion to form a gate structure that enhances performance of a replacement gate field effect transistor.
    Type: Application
    Filed: October 21, 2013
    Publication date: February 13, 2014
    Applicant: International Business Machines Corporation
    Inventors: Dechao Guo, Shu-Jen Han, Keith Kwong Hon Wong, Jun Yuan
  • Publication number: 20140035068
    Abstract: A transistor is fabricated by removing a polysilicon gate over a doped region of a substrate and forming a mask layer over the substrate such that the doped region is exposed through a hole within the mask layer. An interfacial layer is deposited on top and side surfaces of the mask layer and on a top surface of the doped region. A layer adapted to reduce a threshold voltage of the transistor and/or reduce a thickness of an inversion layer of the transistor is deposited on the interfacial layer. The layer includes metal, such as aluminum or lanthanum, which diffuses into the interfacial layer, and also includes oxide, such as hafnium oxide. A conductive plug, such as a metal plug, is formed within the hole of the mask layer. The interfacial layer, the layer on the interfacial layer, and the conductive plug are a replacement gate of the transistor.
    Type: Application
    Filed: September 30, 2013
    Publication date: February 6, 2014
    Applicant: International Business Machines Corporation
    Inventors: Dechao Guo, Keith Kwong Hon Wong
  • Publication number: 20130334580
    Abstract: A semiconductor structure includes an interlevel dielectric (ILD) layer disposed over a semiconductor substrate and a transistor gate structure formed on the substrate; and a shallow gas cluster ion beam (GCIB) layer infused in a top portion of the ILD layer; wherein the GCIB layer has a slower etch rate with respect to the ILD layer.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 19, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Junli Wang, Keith Kwong Hon Wong, Chih-Chao Yang
  • Publication number: 20130328167
    Abstract: A metal-insulator-metal (MIM) capacitor structure integrated within a back-end-of-the-line (BEOL) structure is provided. The MIM capacitor structure includes a lower electrode, i.e., a first conductive material, embedded within a dielectric material of the BEOL structure, a dielectric material liner having a dielectric constant of equal to, or greater than, silicon dioxide located atop the lower electrode, and an upper electrode, i.e., a second conductive material, positioned between vertical portions of the dielectric material liner and atop a horizontal connecting portion of the dielectric material liner. In accordance with the present disclosure, the vertical portions of the dielectric material liner do not extend onto an upper surface of the dielectric material that includes the lower electrode.
    Type: Application
    Filed: June 6, 2012
    Publication date: December 12, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao Yang, Daniel C. Edelstein, Baozhen Li, Keith Kwong Hon Wong
  • Patent number: 8605499
    Abstract: Systems and methods for operating a nanometer-scale cantilever beam with a gate electrode. An example system includes a drive circuit coupled to the gate electrode where a drive signal from the circuit may cause the beam to oscillate at or near the beam's resonance frequency. The drive signal includes an AC component, and may include a DC component as well. An alternative example system includes a nanometer-scale cantilever beam, where the beam oscillates to contact a plurality of drain regions.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: December 10, 2013
    Assignee: International Business Machines Corporation
    Inventors: Leland Chang, Michael A. Guillorn, Dechao Guo, Fei Liu, Keith Kwong Hon Wong
  • Patent number: 8592266
    Abstract: In a replacement gate scheme, a continuous material layer is deposited on a bottom surface and a sidewall surface in a gate cavity. A vertical portion of the continuous material layer is removed to form a gate component of which a vertical portion does not extend to a top of the gate cavity. The gate component can be employed as a gate dielectric or a work function metal portion to form a gate structure that enhances performance of a replacement gate field effect transistor.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: November 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Zhengwen Li, Dechao Guo, Randolph F. Knarr, Chengwen Pei, Gan Wang, Yanfeng Wang, Keith Kwong Hon Wong, Jian Yu, Jun Yuan
  • Patent number: 8581351
    Abstract: Replacement gate work function material stacks are provided, which provides a work function about the energy level of the conduction band of silicon. After removal of a disposable gate stack, a gate dielectric layer is formed in a gate cavity. A metallic compound layer including a metal and a non-metal element is deposited directly on the gate dielectric layer. At least one barrier layer and a conductive material layer is deposited and planarized to fill the gate cavity. The metallic compound layer includes a material having a work function about 4.4 eV or less, and can include a material selected from tantalum carbide and a hafnium-silicon alloy. Thus, the metallic compound layer can provide a work function that enhances the performance of an n-type field effect transistor employing a silicon channel.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: November 12, 2013
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Michael P. Chudzik, Rishikesh Krishnan, Siddarth A. Krishnan, Unoh Kwon, Keith Kwong Hon Wong
  • Patent number: 8569135
    Abstract: In a replacement gate scheme, a continuous material layer is deposited on a bottom surface and a sidewall surface in a gate cavity. A vertical portion of the continuous material layer is removed to form a gate component of which a vertical portion does not extend to a top of the gate cavity. The gate component can be employed as a gate dielectric or a work function material portion to form a gate structure that enhances performance of a replacement gate field effect transistor.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: October 29, 2013
    Assignee: International Business Machines Corporation
    Inventors: Dechao Guo, Shu-Jen Han, Keith Kwong Hon Wong, Jun Yuan
  • Publication number: 20130277765
    Abstract: A semiconductor device is disclosed. The semiconductor device includes a substrate; and a gate structure disposed directly on the substrate, the gate structure including: a graded region with a varied material concentration profile; and a metal layer disposed on the graded region.
    Type: Application
    Filed: April 23, 2012
    Publication date: October 24, 2013
    Applicants: GLOBALFOUNDRIES INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael P. Chudzik, Min Dai, Jinping Liu, Joseph F. Shepard, JR., Keith Kwong Hon Wong
  • Patent number: 8552502
    Abstract: An electrical device is provided that in one embodiment includes a p-type semiconductor device having a first gate structure that includes a gate dielectric that is present on the semiconductor substrate, a p-type work function metal layer, a metal layer composed of titanium and aluminum, and a metal fill composed of aluminum. An n-type semiconductor device is also present on the semiconductor substrate that includes a second gate structure that includes a gate dielectric, a metal layer composed of titanium and aluminum, and a metal fill composed of aluminum. An interlevel dielectric is present over the semiconductor substrate. The interlevel dielectric includes interconnects to the source and drain regions of the p-type and n-type semiconductor devices. The interconnects are composed of a metal layer composed of titanium and aluminum, and a metal fill composed of aluminum. The present disclosure also provides a method of forming the aforementioned structure.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: October 8, 2013
    Assignee: International Business Machines Corporation
    Inventors: Zhengwen Li, Michael P. Chudzik, Unoh Kwon, Filippos Papadatos, Andrew H. Simon, Keith Kwong Hon Wong
  • Patent number: 8546211
    Abstract: Replacement gate stacks are provided, which increase the work function of the gate electrode of a p-type field effect transistor (PFET). In one embodiment, the work function metal stack includes a titanium-oxide-nitride layer located between a lower titanium nitride layer and an upper titanium nitride layer. The stack of the lower titanium nitride layer, the titanium-oxide-nitride layer, and the upper titanium nitride layer produces the unexpected result of increasing the work function of the work function metal stack significantly. In another embodiment, the work function metal stack includes an aluminum layer deposited at a temperature not greater than 420° C. The aluminum layer deposited at a temperature not greater than 420° C. produces the unexpected result of increasing the work function of the work function metal stack significantly.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: October 1, 2013
    Assignee: International Business Machines Corporation
    Inventors: Keith Kwong Hon Wong, Michael P. Chudzik, Unoh Kwon
  • Patent number: 8546209
    Abstract: A method of forming a semiconductor device structure includes forming an interlevel dielectric (ILD) layer over a semiconductor substrate and a dummy transistor gate structure formed on the substrate; infusing a shallow gas cluster ion beam (GCIB) layer in a top portion of the ILD layer; and removing at least one layer from the dummy transistor gate structure, wherein the at least one layer comprises a same material as the ILD layer and wherein the GCIB layer has a slower etch rate with respect to the ILD layer.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: October 1, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Junli Wang, Keith Kwong Hon Wong, Chih-Chao Yang
  • Publication number: 20130249020
    Abstract: In one exemplary embodiment of the invention, a method (e.g., to fabricate a semiconductor device having a borderless contact) including: forming a first gate structure on a substrate; depositing an interlevel dielectric over the first gate structure; planarizing the interlevel dielectric to expose a top surface of the first gate structure; removing at least a portion of the first gate structure; forming a second gate structure in place of the first gate structure; forming a contact area for the borderless contact by removing a portion of the interlevel dielectric; and forming the borderless contact by filling the contact area with a metal-containing material.
    Type: Application
    Filed: May 15, 2013
    Publication date: September 26, 2013
    Applicant: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Keith Kwong Hon Wong
  • Publication number: 20130244386
    Abstract: A device and method for device fabrication includes forming a buried gate electrode in a dielectric substrate and patterning a stack that includes a high dielectric constant layer, a carbon-based semi-conductive layer and a protection layer over the buried gate electrode. An isolation dielectric layer formed over the stack is opened to define recesses in regions adjacent to the stack. The recesses are etched to form cavities and remove a portion of the high dielectric constant layer to expose the carbon-based semi-conductive layer on opposite sides of the buried gate electrode. A conductive material is deposited in the cavities to form self-aligned source and drain regions.
    Type: Application
    Filed: April 15, 2013
    Publication date: September 19, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: DECHAO GUO, SHU-JEN HAN, KEITH KWONG HON WONG, JUN YUAN