Patents by Inventor Kyle C. Smith
Kyle C. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20200139370Abstract: Extracting and concentrating particles from a first fluid sample includes: providing the first fluid sample to a fluid exchange module of a microfluidic device, providing a second fluid sample to the fluid exchange module, in which the first fluid sample and the second fluid sample are provided under conditions such that particle-free portions of the first fluid sample are shifted, and an inertial lift force causes the particles in the first fluid sample to cross streamlines and transfer into the second fluid sample; passing the second fluid sample containing the transferred particles to a particle concentration module under conditions such that particle-free portions of the second fluid sample are shifted, and such that the particles within the second fluid sample are focused to a streamline within the particle concentration module.Type: ApplicationFiled: January 6, 2020Publication date: May 7, 2020Inventors: Ravi Kapur, Kyle C. Smith, Mehmet Toner
-
Publication number: 20200095817Abstract: An adjustable bumper assembly includes a bumper assembly insert having a bumper head, a threaded portion connected to the bumper head and a ratchet portion extending from the threaded portion. A coupling ring is threadably connected to the threaded portion. The coupling ring has a ratchet device with a tooth biased into contact with the ratchet portion. A base member includes multiple retention arms homogeneously connected to the base member extending away from a face of the base member. The coupling ring when slidably received in a through passage created in the face of the base member contacts the retention arms. The coupling ring is non-rotatably engaged to the base member such that axial rotation of the bumper assembly insert with respect to the coupling ring axially extends or retracts the bumper assembly insert with respect to the base member.Type: ApplicationFiled: September 26, 2018Publication date: March 26, 2020Inventors: Ryan Cahill, Kyle C. Smith, Robert J. Hood
-
Patent number: 10583438Abstract: Extracting and concentrating particles from a first fluid sample includes: providing the first fluid sample to a fluid exchange module of a microfluidic device, providing a second fluid sample to the fluid exchange module, in which the first fluid sample and the second fluid sample are provided under conditions such that particle-free portions of the first fluid sample are shifted, and an inertial lift force causes the particles in the first fluid sample to cross streamlines and transfer into the second fluid sample; passing the second fluid sample containing the transferred particles to a particle concentration module under conditions such that particle-free portions of the second fluid sample are shifted, and such that the particles within the second fluid sample are focused to a streamline within the particle concentration module.Type: GrantFiled: February 6, 2017Date of Patent: March 10, 2020Assignee: The General Hospital CorporationInventors: Ravi Kapur, Kyle C. Smith, Mehmet Toner
-
Patent number: 10478819Abstract: A microfluidic device includes a particle sorting region having a first, second and third microfluidic channels, a first array of islands separating the first microfluidic channel from the second microfluidic channel, and a second array of islands separating the first microfluidic channel from the third microfluidic channel, in which the island arrays and the microfluidic channels are arranged so that a first fluid is extracted from the first microfluidic channel into the second microfluidic channel and a second fluid is extracted from the third microfluidic channel into the first microfluidic channel, and so that particles are transferred from the first fluid sample into the second fluid sample within the first microfluidic channel.Type: GrantFiled: August 24, 2018Date of Patent: November 19, 2019Assignee: The General Hospital CorporationInventors: Ravi Kapur, Kyle C. Smith, Mehmet Toner
-
Publication number: 20190264166Abstract: Microfluidic devices are described that include a microfluidic channel, a first array of one or more magnets above the microfluidic channel, each magnet in the first array having a magnetic pole orientation opposite to a magnetic pole orientation of an adjacent magnet in the first array, and a second array of one or more magnets beneath the microfluidic channel, each magnet in the second array having a magnetic pole orientation opposite to a magnetic pole orientation of an adjacent magnet in the second array. The first array is aligned with respect to the second array such that magnetic fields emitted by the first array and second array generate a magnetic flux gradient profile extending through the channel. An absolute value of the profile includes a first maximum and a second maximum that bound a local minimum. The local minimum is located within the microfluidic channel or less than 5 mm away from a wall of the microfluidic channel. Methods of using the new devices are also described.Type: ApplicationFiled: January 24, 2019Publication date: August 29, 2019Inventors: Philipp S. Spuhler, Kyle C. Smith, Fabio Fachin, Thomas Alan Barber, Ravi Kapur, Mehmet Toner, Vincent Pai, Murat N. Karabacak
-
Publication number: 20190176150Abstract: A microfluidic device includes: a first microfluidic channel; a second microfluidic channel extending along the first microfluidic channel; and a first array of islands separating the first microfluidic channel from the second microfluidic channel, in which each island is separated from an adjacent island in the array by an opening that fluidly couples the first microfluidic channel to the second microfluidic channel, in which the first microfluidic channel, the second microfluidic channel, and the islands are arranged so that a fluidic resistance of the first microfluidic channel increases relative to a fluidic resistance of the second microfluidic channel along a longitudinal direction of the first microfluidic channel such that, during use of the microfluidic device, a portion of a fluid sample flowing through the first microfluidic channel passes through one or more of the openings between adjacent islands into the second microfluidic channel.Type: ApplicationFiled: December 6, 2018Publication date: June 13, 2019Inventors: Ravi Kapur, Kyle C. Smith, Mehmet Toner
-
Patent number: 10230124Abstract: The flow cell includes first and second reservoirs having a selected volume containing a flowable redox electrode. A membrane separates charged and discharged material. An energy-extraction region includes electronically conductive porous current collectors through or adjacent to which the flowable redox electrodes flow and to which charge transfer occurs. Structure is provided for altering orientation of the flow cell whereby gravity induces flow of the flowable redox electrode between the first and second reservoirs to deliver power. By varying the angle of the cell, flow rate and power delivered on discharge or the charge rate on charge may be varied.Type: GrantFiled: December 2, 2014Date of Patent: March 12, 2019Assignee: Massachusetts Institute of TechnologyInventors: Brandon James Hopkins, Alexander H. Slocum, Xinwei Chen, Yet-Ming Chiang, Frank Yongzhen Fan, Ahmed Helal, Zheng Li, Kyle C. Smith, W. Craig Carter
-
Patent number: 10202577Abstract: Microfluidic devices are described that include a microfluidic channel, a first array of one or more magnets above the microfluidic channel, each magnet in the first array having a magnetic pole orientation opposite to a magnetic pole orientation of an adjacent magnet in the first array, and a second array of one or more magnets beneath the microfluidic channel, each magnet in the second array having a magnetic pole orientation opposite to a magnetic pole orientation of an adjacent magnet in the second array. The first array is aligned with respect to the second array such that magnetic fields emitted by the first array and second array generate a magnetic flux gradient profile extending through the channel. An absolute value of the profile includes a first maximum and a second maximum that bound a local minimum. The local minimum is located within the microfluidic channel or less than 5 mm away from a wall of the microfluidic channel. Methods of using the new devices are also described.Type: GrantFiled: October 20, 2014Date of Patent: February 12, 2019Assignee: The General Hospital CorporationInventors: Philipp S. Spuhler, Kyle C. Smith, Fabio Fachin, Thomas Alan Barber, Ravi Kapur, Mehmet Toner, Vincent Pai, Murat N. Karabacak
-
Publication number: 20190030535Abstract: This disclosure describes microfluidic devices that include one or more magnets, each magnet being operable to emit a magnetic field; and a magnetizable layer adjacent to the one or more magnets, in which the magnetizable layer is configured to induce a gradient in the magnetic field of at least one of the magnets. For example, the gradient can be at least 103 T/m at a position that is at least 20 ?m away from a surface of the magnetizable layer. The magnetizable layer includes a first high magnetic permeability material and a low magnetic permeability material arranged adjacent to the high magnetic permeability material. The devices also include a microfluidic channel arranged on a surface of the magnetizable layer, wherein a central longitudinal axis of the microfluidic channel is arranged at an angle to or laterally offset from an interface between the high magnetic permeability material and the low magnetic permeability material.Type: ApplicationFiled: January 23, 2018Publication date: January 31, 2019Inventors: Kyle C. Smith, Ramin Haghgooie, Thomas Alan Barber, Ismail Emre Ozkumur, Ravi Kapur, Mehmet Toner
-
Publication number: 20180361384Abstract: A microfluidic device includes a particle sorting region having a first, second and third microfluidic channels, a first array of islands separating the first microfluidic channel from the second microfluidic channel, and a second array of islands separating the first microfluidic channel from the third microfluidic channel, in which the island arrays and the microfluidic channels are arranged so that a first fluid is extracted from the first microfluidic channel into the second microfluidic channel and a second fluid is extracted from the third microfluidic channel into the first microfluidic channel, and so that particles are transferred from the first fluid sample into the second fluid sample within the first microfluidic channel.Type: ApplicationFiled: August 24, 2018Publication date: December 20, 2018Inventors: Ravi Kapur, Kyle C. Smith, Mehmet Toner
-
Publication number: 20180361383Abstract: A microfluidic device includes a particle sorting region having a first, second and third microfluidic channels, a first array of islands separating the first microfluidic channel from the second microfluidic channel, and a second array of islands separating the first microfluidic channel from the third microfluidic channel, in which the island arrays and the microfluidic channels are arranged so that a first fluid is extracted from the first microfluidic channel into the second microfluidic channel and a second fluid is extracted from the third microfluidic channel into the first microfluidic channel, and so that particles are transferred from the first fluid sample into the second fluid sample within the first microfluidic channel.Type: ApplicationFiled: August 24, 2018Publication date: December 20, 2018Inventors: Ravi Kapur, Kyle C. Smith, Mehmet Toner
-
Patent number: 10150116Abstract: A microfluidic device includes: a first microfluidic channel; a second microfluidic channel extending along the first microfluidic channel; and a first array of islands separating the first microfluidic channel from the second microfluidic channel, in which each island is separated from an adjacent island in the array by an opening that fluidly couples the first microfluidic channel to the second microfluidic channel, in which the first microfluidic channel, the second microfluidic channel, and the islands are arranged so that a fluidic resistance of the first microfluidic channel increases relative to a fluidic resistance of the second microfluidic channel along a longitudinal direction of the first microfluidic channel such that, during use of the microfluidic device, a portion of a fluid sample flowing through the first microfluidic channel passes through one or more of the openings between adjacent islands into the second microfluidic channel.Type: GrantFiled: November 3, 2015Date of Patent: December 11, 2018Assignee: The General Hospital CorporationInventors: Ravi Kapur, Kyle C. Smith, Mehmet Toner
-
Publication number: 20180161775Abstract: A microfluidic device includes a particle sorting region having a first, second and third microfluidic channels, a first array of islands separating the first microfluidic channel from the second microfluidic channel, and a second array of islands separating the first microfluidic channel from the third microfluidic channel, in which the island arrays and the microfluidic channels are arranged so that a first fluid is extracted from the first microfluidic channel into the second microfluidic channel and a second fluid is extracted from the third microfluidic channel into the first microfluidic channel, and so that particles are transferred from the first fluid sample into the second fluid sample within the first microfluidic channel.Type: ApplicationFiled: February 8, 2018Publication date: June 14, 2018Inventors: Ravi Kapur, Kyle C. Smith, Mehmet Toner
-
Publication number: 20180148355Abstract: The exemplary embodiments provides a desalination device comprising an electrochemical cell comprising a porous positive electrode, a porous negative electrode, and a membrane positioned between the porous positive electrode and the porous negative electrode, the electrodes comprising a network of conductive material comprising a plurality of electrode active materials dispersed throughout the conductive material, the porous negative electrode and the porous positive electrode have the same electrode active material, a power supply to supply a current to the electrochemical cell, an inlet for providing a feed stream to the electrochemical cell, a first outlet line for removing a concentrated effluent and a second outlet line for removing a desalinated effluent. Also provided is a desalination device having a plurality of electrochemical channels with alternating anion and cation selective membranes, and a porous negative and positive electrode having the same electrode active material.Type: ApplicationFiled: November 22, 2017Publication date: May 31, 2018Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOISInventors: Kyle C. Smith, Rylan Doyle Dmello
-
Patent number: 9895694Abstract: A microfluidic device includes a particle sorting region having a first, second and third microfluidic channels, a first array of islands separating the first microfluidic channel from the second microfluidic channel, and a second array of islands separating the first microfluidic channel from the third microfluidic channel, in which the island arrays and the microfluidic channels are arranged so that a first fluid is extracted from the first microfluidic channel into the second microfluidic channel and a second fluid is extracted from the third microfluidic channel into the first microfluidic channel, and so that particles are transferred from the first fluid sample into the second fluid sample within the first microfluidic channel.Type: GrantFiled: November 3, 2015Date of Patent: February 20, 2018Assignee: The General Hospital CorporationInventors: Ravi Kapur, Kyle C. Smith, Mehmet Toner
-
Patent number: 9878327Abstract: This disclosure describes microfluidic devices that include one or more magnets, each magnet being operable to emit a magnetic field; and a magnetizable layer adjacent to the one or more magnets, in which the magnetizable layer is configured to induce a gradient in the magnetic field of at least one of the magnets. For example, the gradient can be at least 103 T/m at a position that is at least 20 ?m away from a surface of the magnetizable layer. The magnetizable layer includes a first high magnetic permeability material and a low magnetic permeability material arranged adjacent to the high magnetic permeability material. The devices also include a microfluidic channel arranged on a surface of the magnetizable layer, wherein a central longitudinal axis of the microfluidic channel is arranged at an angle to or laterally offset from an interface between the high magnetic permeability material and the low magnetic permeability material.Type: GrantFiled: March 7, 2016Date of Patent: January 30, 2018Assignee: The General Hospital CorporationInventors: Kyle C. Smith, Ramin Haghgooie, Thomas Alan Barber, Ismail Emre Ozkumur, Ravi Kapur, Mehmet Toner
-
Publication number: 20170200966Abstract: The present invention generally relates to energy storage devices, and to metal sulfide energy storage devices in particular. Some aspects of the invention relate to energy storage devices comprising at least one flowable electrode, wherein the flowable electrode comprises an electroactive metal sulfide material suspended and/or dissolved in a carrier fluid. In some embodiments, the flowable electrode further comprises a plurality of electronically conductive particles suspended and/or dissolved in the carrier fluid, wherein the electronically conductive particles form a percolating conductive network. An energy storage device comprising a flowable electrode comprising a metal sulfide electroactive material and a percolating conductive network may advantageously exhibit, upon reversible cycling, higher energy densities and specific capacities than conventional energy storage devices.Type: ApplicationFiled: December 21, 2016Publication date: July 13, 2017Applicant: Massachusetts Institute of TechnologyInventors: Yet-Ming Chiang, William Henry Woodford, Frank Y. Fan, Zheng Li, Nir Baram, Kyle C. Smith, W. Craig Carter, Gareth H. McKinley, Ahmed Helal
-
Publication number: 20170144159Abstract: Extracting and concentrating particles from a first fluid sample includes: providing the first fluid sample to a fluid exchange module of a microfluidic device, providing a second fluid sample to the fluid exchange module, in which the first fluid sample and the second fluid sample are provided under conditions such that particle-free portions of the first fluid sample are shifted, and an inertial lift force causes the particles in the first fluid sample to cross streamlines and transfer into the second fluid sample; passing the second fluid sample containing the transferred particles to a particle concentration module under conditions such that particle-free portions of the second fluid sample are shifted, and such that the particles within the second fluid sample are focused to a streamline within the particle concentration module.Type: ApplicationFiled: February 6, 2017Publication date: May 25, 2017Inventors: Ravi Kapur, Kyle C. Smith, Mehmet Toner
-
Patent number: 9610582Abstract: Extracting and concentrating particles from a first fluid sample includes: providing the first fluid sample to a fluid exchange module of a microfluidic device, providing a second fluid sample to the fluid exchange module, in which the first fluid sample and the second fluid sample are provided under conditions such that particle-free portions of the first fluid sample are shifted, and an inertial lift force causes the particles in the first fluid sample to cross streamlines and transfer into the second fluid sample; passing the second fluid sample containing the transferred particles to a particle concentration module under conditions such that particle-free portions of the second fluid sample are shifted, and such that the particles within the second fluid sample are focused to a streamline within the particle concentration module.Type: GrantFiled: November 3, 2015Date of Patent: April 4, 2017Assignee: The General Hospital CorporationInventors: Ravi Kapur, Kyle C. Smith, Mehmet Toner
-
Publication number: 20160263574Abstract: This disclosure describes microfluidic devices that include one or more magnets, each magnet being operable to emit a magnetic field; and a magnetizable layer adjacent to the one or more magnets, in which the magnetizable layer is configured to induce a gradient in the magnetic field of at least one of the magnets. For example, the gradient can be at least 103 T/m at a position that is at least 20 ?m away from a surface of the magnetizable layer. The magnetizable layer includes a first high magnetic permeability material and a low magnetic permeability material arranged adjacent to the high magnetic permeability material. The devices also include a microfluidic channel arranged on a surface of the magnetizable layer, wherein a central longitudinal axis of the microfluidic channel is arranged at an angle to or laterally offset from an interface between the high magnetic permeability material and the low magnetic permeability material.Type: ApplicationFiled: March 7, 2016Publication date: September 15, 2016Inventors: Kyle C. Smith, Ramin Haghgooie, Thomas Alan Barber, Ismail Emre Ozkumur, Ravi Kapur, Mehmet Toner