Patents by Inventor Kyle K. Kirby

Kyle K. Kirby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11569203
    Abstract: Systems and methods for multi-height interconnect structures for a semiconductor device are provided herein. The multi-height interconnect structure generally includes a primary level semiconductor die having a primary conductive pillar and a secondary conductive pillar, where the primary conductive pillar has a greater height than the secondary conductive pillar. The semiconductor device may further include a substrate electrically coupled to the primary level semiconductor die through the primary conductive pillar and a secondary level semiconductor die electrically coupled to the primary level semiconductor die through the secondary conductive pillar. The multi-height pillars may be formed using a single photoresist mask or multiple photoresist masks. In some configurations, the primary and secondary conductive pillars may be arranged on only the front-side of the dies and/or substrate.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: January 31, 2023
    Assignee: Micron Technology, Inc.
    Inventor: Kyle K. Kirby
  • Patent number: 11532578
    Abstract: A substrate or semiconductor device, semiconductor device assembly, and method of forming a semiconductor device assembly that includes a barrier on a solder cup. The semiconductor device assembly includes a substrate disposed over another substrate. At least one solder cup extends from one substrate towards an under bump metal (UBM) on the other substrate. The barrier on the exterior of the solder cup may be a standoff to control a bond line between the substrates. The barrier may reduce solder bridging during the formation of a semiconductor device assembly. The barrier may help to align the solder cup with a UBM when forming a semiconductor device assembly and may reduce misalignment due to lateral movement of substrates and/or semiconductor devices.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: December 20, 2022
    Assignee: Micron Technology, Inc.
    Inventor: Kyle K. Kirby
  • Patent number: 11527436
    Abstract: Microelectronic devices with through-substrate interconnects and associated methods of manufacturing are disclosed herein. In one embodiment, a semiconductor device includes a semiconductor substrate carrying first and second metallization layers. The second metallization layer is spaced apart from the semiconductor substrate with the first metallization layer therebetween. The semiconductor device also includes a conductive interconnect extending at least partially through the semiconductor substrate. The first metallization layer is in electrical contact with the conductive interconnect via the second metallization layer.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: December 13, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Kunal R. Parekh, Sarah A. Niroumand
  • Publication number: 20220344294
    Abstract: Semiconductor devices having interconnect structures with vertically offset bonding surfaces, and associated systems and methods, are disclosed herein. In one embodiment, a semiconductor device includes a semiconductor substrate at least partially covered by a first dielectric material having an upper surface, and an interconnect structure extending therefrom. The interconnect structure can include a plurality of conductive elements, and a continuous region of a first insulating material at least partially between the plurality of conductive elements. The plurality of conductive elements and the continuous region can have coplanar end surfaces. The interconnect structure can further include a perimeter structure at least partially surrounding the plurality of conductive elements and the continuous region. The perimeter structure can have an uppermost surface that can be vertically offset from the upper surface of the first dielectric material and/or the coplanar end surfaces.
    Type: Application
    Filed: April 21, 2021
    Publication date: October 27, 2022
    Inventor: Kyle K. Kirby
  • Publication number: 20220336273
    Abstract: Microelectronic devices with through-substrate interconnects and associated methods of manufacturing are disclosed herein. In one embodiment, a semiconductor device includes a semiconductor substrate carrying first and second metallization layers. The second metallization layer is spaced apart from the semiconductor substrate with the first metallization layer therebetween. The semiconductor device also includes a conductive interconnect extending at least partially through the semiconductor substrate. The first metallization layer is in electrical contact with the conductive interconnect via the second metallization layer.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 20, 2022
    Inventors: Kyle K. Kirby, Kunal R. Parekh, Sarah A. Niroumand
  • Publication number: 20220246569
    Abstract: Systems and methods for semiconductor devices having a substrate with bond pads, a die pair in a stacked configuration above the bond pads and having a first die having an oxide layer, a second die having an oxide layer attached to the first oxide layer, and conductive bonds electrically coupling the dies. Interconnects extend between the bond pads and the die pair, electrically coupling die pair to the substrate. The device may include a second die pair electrically coupled to: (1) the first die pair with secondary interconnects; and (2) the substrate with through-silicon vias extending through the first die pair. The top die of a die pair may be a thick die for use at the top of a pair stack. Pairs may be created by matching dies of a first silicon wafer to dies of a second silicon wafer, combination bonding the wafers, and dicing the die pairs.
    Type: Application
    Filed: February 17, 2022
    Publication date: August 4, 2022
    Inventors: Kyle K. Kirby, Bret K. Street
  • Publication number: 20220157728
    Abstract: A semiconductor memory stack connected to a processing unit, and associated methods and systems are disclosed. In some embodiments, the semiconductor memory stack may include one or more memory dies attached to and carried by a memory controller die—e.g., high-bandwidth memory. Further, a processing unit (e.g., a processor) may be attached to the memory controller die without an interposer to provide the shortest possible route for signals traveling between the semiconductor memory stack and the processing unit. In addition, the semiconductor memory stack and the processing unit can be attached to a package substrate without an interposer.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 19, 2022
    Inventor: Kyle K. Kirby
  • Publication number: 20220157783
    Abstract: Semiconductor die stacks, and associated methods and systems are disclosed. The semiconductor die stack may include a first die with a memory array and a second die with CMOS circuitry configured to access the memory array. The first die may not have circuitry for accessing the memory array. Further, the first and second dies may be bonded to function as a single memory device, and front surfaces of the first and second dies are conjoined to form electrical connections therebetween. The second die may include a portion uncovered by the first die, where bond pads of the semiconductor die stack are located. The first die may provide a space for bond wires to connect to the bond pads without interfering with another die attached above the semiconductor die stack. Multiple semiconductor die stacks may be stacked on top of and in line with each other.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 19, 2022
    Inventor: Kyle K. Kirby
  • Publication number: 20220102308
    Abstract: Systems and methods for semiconductor devices having a substrate with bond pads, a die pair in a stacked configuration above the bond pads and having a first die having an oxide layer, a second die having an oxide layer attached to the first oxide layer, and conductive bonds electrically coupling the dies. Interconnects extend between the bond pads and the die pair, electrically coupling die pair to the substrate. The device may include a second die pair electrically coupled to: (1) the first die pair with secondary interconnects; and (2) the substrate with through-silicon vias extending through the first die pair. The top die of a die pair may be a thick die for use at the top of a pair stack. Pairs may be created by matching dies of a first silicon wafer to dies of a second silicon wafer, combination bonding the wafers, and dicing the die pairs.
    Type: Application
    Filed: September 28, 2020
    Publication date: March 31, 2022
    Inventors: Kyle K. Kirby, Bret K. Street
  • Patent number: 11289440
    Abstract: Systems and methods for semiconductor devices having a substrate with bond pads, a die pair in a stacked configuration above the bond pads and having a first die having an oxide layer, a second die having an oxide layer attached to the first oxide layer, and conductive bonds electrically coupling the dies. Interconnects extend between the bond pads and the die pair, electrically coupling die pair to the substrate. The device may include a second die pair electrically coupled to: (1) the first die pair with secondary interconnects; and (2) the substrate with through-silicon vias extending through the first die pair. The top die of a die pair may be a thick die for use at the top of a pair stack. Pairs may be created by matching dies of a first silicon wafer to dies of a second silicon wafer, combination bonding the wafers, and dicing the die pairs.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: March 29, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Bret K. Street
  • Publication number: 20220068820
    Abstract: Systems and methods for a semiconductor device having a substrate material with a trench at a front side, a conformal dielectric material over at least a portion of the front side of the substrate material and in the trench, a fill dielectric material on the conformal dielectric material in the trench, and a conductive portion formed during front-end-of-line (FEOL) processing. The conductive portion may include an FEOL interconnect via extending through the fill dielectric material and at least a portion of the conformal dielectric material and having a front side portion defining a front side electrical connection extending beyond the front side of the semiconductor substrate material and a backside portion defining an active contact surface. The conductive portion may extend across at least a portion of the conformal dielectric material and the fill dielectric material and have a backside surface defining an active contact surface.
    Type: Application
    Filed: May 19, 2021
    Publication date: March 3, 2022
    Inventors: Kyle K. Kirby, Kunal R. Parekh
  • Publication number: 20220068819
    Abstract: Systems and methods for a semiconductor device having a front-end-of-line interconnect structure are provided. The semiconductor device may include a dielectric material having a backside formed on a front side of a semiconductor or silicon substrate material and a front side, and a conducting material on the front side of the dielectric material. The conducting material may have a line portion and an interconnect structure electrically coupled to the line portion and separated from the front side of the substrate material by the dielectric material. The interconnect structure has a backside defining a contact surface. The semiconductor device may further include a semiconductor die proximate the front side of the dielectric material, an insulating material encasing at least a portion of the semiconductor die, and an opening through which the active contact surface at the backside of the interconnect structure is exposed for electrical connection.
    Type: Application
    Filed: May 19, 2021
    Publication date: March 3, 2022
    Inventors: Kyle K. Kirby, Kunal R. Parekh
  • Publication number: 20220068765
    Abstract: Systems and methods for a semiconductor device having a front-end-of-line structure are provided. The semiconductor device may include a dielectric material having a backside formed on a front side of a semiconductor substrate material and a front side, and an interconnect structure extending through the dielectric material. The interconnect structure may be electrically connected to a semiconductor memory array proximate the front side of the dielectric material. The semiconductor device may further have an insulating material encasing at least a portion of the semiconductor memory array and an opening created during back-end-of-line processing through which the active contact surface at the backside of the interconnect structure is exposed for electrical connection.
    Type: Application
    Filed: May 19, 2021
    Publication date: March 3, 2022
    Inventors: Kyle K. Kirby, Kunal R. Parekh
  • Patent number: 11239207
    Abstract: Semiconductor die stacks, and associated methods and systems are disclosed. The semiconductor die stack may include a first die with a memory array and a second die with CMOS circuitry configured to access the memory array. The first die may not have circuitry for accessing the memory array. Further, the first and second dies may be bonded to function as a single memory device, and front surfaces of the first and second dies are conjoined to form electrical connections therebetween. The second die may include a portion uncovered by the first die, where bond pads of the semiconductor die stack are located. The first die may provide a space for bond wires to connect to the bond pads without interfering with another die attached above the semiconductor die stack. Multiple semiconductor die stacks may be stacked on top of and in line with each other.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: February 1, 2022
    Assignee: Micron Technology, Inc.
    Inventor: Kyle K. Kirby
  • Patent number: 11239169
    Abstract: A semiconductor memory stack connected to a processing unit, and associated methods and systems are disclosed. In some embodiments, the semiconductor memory stack may include one or more memory dies attached to and carried by a memory controller die—e.g., high-bandwidth memory. Further, a processing unit (e.g., a processor) may be attached to the memory controller die without an interposer to provide the shortest possible route for signals traveling between the semiconductor memory stack and the processing unit. In addition, the semiconductor memory stack and the processing unit can be attached to a package substrate without an interposer.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: February 1, 2022
    Assignee: Micron Technology, Inc.
    Inventor: Kyle K. Kirby
  • Publication number: 20220028830
    Abstract: Semiconductor die stacks, and associated methods and systems are disclosed. The semiconductor die stack may include a first die with a memory array and a second die with CMOS circuitry configured to access the memory array. The first die may not have circuitry for accessing the memory array. Further, the first and second dies may be bonded to function as a single memory device, and front surfaces of the first and second dies are conjoined to form electrical connections therebetween. The second die may include a portion uncovered by the first die, where bond pads of the semiconductor die stack are located. The first die may provide a space for bond wires to connect to the bond pads without interfering with another die attached above the semiconductor die stack. Multiple semiconductor die stacks may be stacked on top of and in line with each other.
    Type: Application
    Filed: July 24, 2020
    Publication date: January 27, 2022
    Inventor: Kyle K. Kirby
  • Publication number: 20220028789
    Abstract: A semiconductor memory stack connected to a processing unit, and associated methods and systems are disclosed. In some embodiments, the semiconductor memory stack may include one or more memory dies attached to and carried by a memory controller die—e.g., high-bandwidth memory. Further, a processing unit (e.g., a processor) may be attached to the memory controller die without an interposer to provide the shortest possible route for signals traveling between the semiconductor memory stack and the processing unit. In addition, the semiconductor memory stack and the processing unit can be attached to a package substrate without an interposer.
    Type: Application
    Filed: July 24, 2020
    Publication date: January 27, 2022
    Inventor: Kyle K. Kirby
  • Patent number: 11195740
    Abstract: An assembly comprising a device wafer received in a recess of a carrier wafer. A device wafer comprising a protrusion terminating at an active surface bearing integrated circuitry, the protrusion surrounded by a peripheral flat extending to an outer periphery of the device wafer. A method of wafer thinning using the previously described carrier wafer and device wafer. Various implementations of a carrier wafer having a recess are also disclosed, as are methods of fabrication.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: December 7, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Andrew M. Bayless, Kyle K. Kirby
  • Patent number: 11177175
    Abstract: Microelectronic devices and methods for filling vias and forming conductive interconnects in microfeature workpieces and dies are disclosed herein. In one embodiment, a method includes providing a microfeature workpiece having a plurality of dies and at least one passage extending through the microfeature workpiece from a first side of the microfeature workpiece to an opposite second side of the microfeature workpiece. The method can further include forming a conductive plug in the passage adjacent to the first side of the microelectronic workpiece, and depositing conductive material in the passage to at least generally fill the passage from the conductive plug to the second side of the microelectronic workpiece.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: November 16, 2021
    Assignee: Micron Technology, Inc.
    Inventors: William M. Hiatt, Kyle K. Kirby
  • Publication number: 20210351163
    Abstract: A semiconductor device assembly can include a first semiconductor device and an interposer. The interposer can include a substrate and through vias in which individual vias include an exposed portion and an embedded portion, the exposed portions projecting from one or both of the first surface and the second surface of the substrate, and the embedded portions extending through at least a portion of the substrate. The interposer can include one or more test pads, a first electrical contact, and a second electrical contact. The semiconductor device assembly can include a controller positioned on an opposite side of the interposer from the first semiconductor device and operably coupled to the interposer via connection to the second electrical contact.
    Type: Application
    Filed: July 22, 2021
    Publication date: November 11, 2021
    Inventors: Owen R. Fay, Kyle K. Kirby, Akshay N. Singh