Patents by Inventor Kyle Preston
Kyle Preston has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11719639Abstract: Some aspects relate to an integrated circuit, comprising at least one photodetection region configured to generate charge carriers responsive to incident photons emitted from a sample, at least one charge storage region configured to receive the charge carriers from the photodetection region, and at least one controller configured to obtain information about the incident photons, the information comprising at least one member selected from the group comprising pulse duration and interpulse duration and at least one member selected from the group comprising wavelength information, luminescence lifetime information, and intensity information. In some embodiments, the information comprises at least three, four, and/or five members selected from the group comprising wavelength information, luminescence lifetime information, intensity information, pulse duration information, and interpulse duration information. In some embodiments, the information obtained may be used to identify the sample.Type: GrantFiled: March 2, 2021Date of Patent: August 8, 2023Assignee: Quantum-Si IncorporatedInventors: Gerard Schmid, Dajiang Yang, Eric A. G. Webster, Xin Wang, Todd Rearick, Changhoon Choi, Ali Kabiri, Kyle Preston, Brian Reed
-
Patent number: 11692938Abstract: Apparatus and methods relating to photonic bandgap optical nanostructures are described. Such optical nanostructures may exhibit prohibited photonic bandgaps or allowed photonic bands, and may be used to reject (e.g., block or attenuate) radiation at a first wavelength while allowing transmission of radiation at a second wavelength. Examples of photonic bandgap optical nanostructures includes periodic and quasi-periodic structures, with periodicity or quasi-periodicity in one, two, or three dimensions and structural variations in at least two dimensions. Such photonic bandgap optical nanostructures may be formed in integrated devices that include photodiodes and CMOS circuitry arranged to analyze radiation received by the photodiodes.Type: GrantFiled: June 18, 2020Date of Patent: July 4, 2023Assignee: Quantum-Si IncorporatedInventors: Ali Kabiri, Bing Shen, James Beach, Kyle Preston, Gerard Schmid
-
Publication number: 20220397720Abstract: Apparatus and methods for improving optical signal collection in an integrated device are described. A microdisk can be formed in an integrated device and increase collection and/or concentration of radiation incident on the microdisk and re-radiated by the microdisk. An example integrated device that can include a microdisk may be used for analyte detection and/or analysis. Such an integrated device may include a plurality of pixels, each having a reaction chamber for receiving a sample to be analyzed, an optical microdisk, and an optical sensor configured to detect optical emission from the reaction chamber. The microdisk can comprise a dielectric material having a first index of refraction that is embedded in one or more surrounding materials having one or more different refractive index values.Type: ApplicationFiled: August 22, 2022Publication date: December 15, 2022Applicant: Quantum-Si IncorporatedInventors: Ali Kabiri, Bing Shen, Gerard Schmid, James Beach, Kyle Preston, Sharath Hosali
-
Publication number: 20220349823Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device may include multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes a surface having a trench region recessed from a portion of the surface and an array of sample wells, disposed in the trench region. The integrated device also includes a waveguide configured to couple excitation energy to at least one sample well in the array and positioned at a first distance from a surface of the trench region and at a second distance from the surface in a region separate from the trench region. The first distance is smaller than the second distance. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.Type: ApplicationFiled: July 11, 2022Publication date: November 3, 2022Applicant: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Gerard Schmid, Keith G. Fife, James Beach, Jason W. Sickler, Lawrence C. West, Paul E. Glenn, Kyle Preston, Farshid Ghasemi, Benjamin Cipriany, Jeremy Lackey
-
Patent number: 11454758Abstract: Apparatus and methods for improving optical signal collection in an integrated device are described. A microdisk can be formed in an integrated device and increase collection and/or concentration of radiation incident on the microdisk and re-radiated by the microdisk. An example integrated device that can include a microdisk may be used for analyte detection and/or analysis. Such an integrated device may include a plurality of pixels, each having a reaction chamber for receiving a sample to be analyzed, an optical microdisk, and an optical sensor configured to detect optical emission from the reaction chamber. The microdisk can comprise a dielectric material having a first index of refraction that is embedded in one or more surrounding materials having one or more different refractive index values.Type: GrantFiled: August 7, 2020Date of Patent: September 27, 2022Assignee: Quantum-Si IncorporatedInventors: Ali Kabiri, Bing Shen, Gerard Schmid, James Beach, Kyle Preston, Sharath Hosali
-
Patent number: 11422092Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device may include multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes a surface having a trench region recessed from a portion of the surface and an array of sample wells, disposed in the trench region. The integrated device also includes a waveguide configured to couple excitation energy to at least one sample well in the array and positioned at a first distance from a surface of the trench region and at a second distance from the surface in a region separate from the trench region. The first distance is smaller than the second distance. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.Type: GrantFiled: January 28, 2021Date of Patent: August 23, 2022Assignee: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Gerard Schmid, Keith G. Fife, James Beach, Jason W. Sickler, Lawrence C. West, Paul E. Glenn, Kyle Preston, Farshid Ghasemi, Benjamin Cipriany, Jeremy Lackey
-
Publication number: 20220128456Abstract: Aspects of the present disclosure relate to methods and systems for increasing the number of samples that can be processed in parallel by an integrated device An integrated device is provided having at least two reaction chambers disposed above an active photodetection area of a single pixel, such that the pixel is sensitive to photons from each of the at least two reaction chambers. In some embodiments, an integrated device may have at least four or more reaction chambers per photodetector. Signals from multiple reaction chambers may be distinguished using any combination of multiplexing techniques including techniques for waveguide multiplexing, intensity multiplexing, and/or lifetime multiplexing. According to further aspects of the technology described herein, there is provided techniques for increasing the amount of sample that can be processed by a single device by reloading an integrated device repeated times to process an increased number of samples by a single device.Type: ApplicationFiled: October 22, 2021Publication date: April 28, 2022Inventors: Todd Rearick, Ali Kabiri, Gerard Schmid, Kyle Preston
-
Publication number: 20220128566Abstract: Aspects of the present disclosure relate to techniques for calibrating an integrated device. According to some embodiments, there is provided a method for calibrating an integrated device, the method comprising: exciting, with light from at least one excitation source, a reference dye molecule; obtaining a signal emitted by the reference dye molecule, the signal containing information representative of at least one characteristic of the reference dye molecule; and adjusting one or more subsequent measurements obtained from a sample based on the information obtained from the signal emitted by the reference dye molecule.Type: ApplicationFiled: October 26, 2021Publication date: April 28, 2022Inventors: Thomas Christian, Kyle Preston, Brian Reed, Shannon Stewman
-
Publication number: 20220128469Abstract: Aspects of the present disclosure relate to techniques for calibrating a system comprising integrated device. According to some embodiments, there is provided a method for calibrating a system comprising an integrated device, the method comprising: exciting, with light from at least one excitation source, a reference dye molecule disposed in a chamber of the integrated device; obtaining a signal emitted by the reference dye molecule, the signal containing information representative of a bleaching time of the reference dye molecule; and adjusting one or more characteristics of the system based on the bleaching time of the reference dye molecule.Type: ApplicationFiled: October 26, 2021Publication date: April 28, 2022Inventors: Brian Reed, Kyle Preston, Xinghua Shi, Gerard Schmid
-
Publication number: 20220113469Abstract: An integrated device and related instruments and systems for analyzing samples in parallel are described. The integrated device may include sample wells arranged on a surface of where individual sample wells are configured to receive a sample labeled with at least one fluorescent marker configured to emit emission light in response to excitation light. The integrated device may further include photodetectors positioned in a layer of the integrated device, where one or more photodetectors are positioned to receive a photon of emission light emitted from a sample well. The integrated device further includes one or more photonic structures positioned between the sample wells and the photodetectors, where the one or more photonic structures are configured to attenuate the excitation light relative to the emission light such that a signal generated by the one or more photodetectors indicates detection of photons of emission light.Type: ApplicationFiled: December 17, 2021Publication date: April 14, 2022Applicant: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Gerard Schmid, Alexander Gondarenko, James Beach, Kyle Preston, Farshid Ghasemi, Jeremy Lackey, Jack Jewell, Keith G. Fife, Ali Kabiri
-
Patent number: 11237326Abstract: An integrated device and related instruments and systems for analyzing samples in parallel are described. The integrated device may include sample wells arranged on a surface of where individual sample wells are configured to receive a sample labeled with at least one fluorescent marker configured to emit emission light in response to excitation light. The integrated device may further include photodetectors positioned in a layer of the integrated device, where one or more photodetectors are positioned to receive a photon of emission light emitted from a sample well. The integrated device further includes one or more photonic structures positioned between the sample wells and the photodetectors, where the one or more photonic structures are configured to attenuate the excitation light relative to the emission light such that a signal generated by the one or more photodetectors indicates detection of photons of emission light.Type: GrantFiled: July 23, 2018Date of Patent: February 1, 2022Assignee: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Gerard Schmid, Alexander Gondarenko, James Beach, Kyle Preston, Farshid Ghasemi, Jeremy Lackey, Jack Jewell, Keith G. Fife, Ali Kabiri
-
Patent number: 11226290Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device may include multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes a surface having a trench region recessed from a portion of the surface and an array of sample wells, disposed in the trench region. The integrated device also includes a waveguide configured to couple excitation energy to at least one sample well in the array and positioned at a first distance from a surface of the trench region and at a second distance from the surface in a region separate from the trench region. The first distance is smaller than the second distance. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.Type: GrantFiled: June 1, 2017Date of Patent: January 18, 2022Assignee: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Gerard Schmid, Keith G. Fife, James Beach, Jason W. Sickler, Lawrence C. West, Paul E. Glenn, Kyle Preston, Farshid Ghasemi, Benjamin Cipriany, Jeremy Lackey
-
Publication number: 20220011486Abstract: Apparatus and methods relating to attenuating excitation radiation incident on a sensor in an integrated device that is used for sample analysis are described. At least one semiconductor film of a selected material and crystal morphology is located between a waveguide and a sensor in an integrated device that is formed on a substrate. Rejection ratios greater than 100 or more can be obtained for excitation and emission wavelengths that are 40 nm apart for a single layer of semiconductor material.Type: ApplicationFiled: September 23, 2021Publication date: January 13, 2022Applicant: Quantum-Si IncorporatedInventors: Michael Bellos, Faisal R. Ahmad, James Beach, Michael Coumans, Sharath Hosali, Ali Kabiri, Kyle Preston, Gerard Schmid, Bing Shen, Jonathan M. Rothberg
-
Publication number: 20210270740Abstract: Some aspects relate to an integrated circuit, comprising at least one photodetection region configured to generate charge carriers responsive to incident photons emitted from a sample, at least one charge storage region configured to receive the charge carriers from the photodetection region, and at least one controller configured to obtain information about the incident photons, the information comprising at least one member selected from the group comprising pulse duration and interpulse duration and at least one member selected from the group comprising wavelength information, luminescence lifetime information, and intensity information. In some embodiments, the information comprises at least three, four, and/or five members selected from the group comprising wavelength information, luminescence lifetime information, intensity information, pulse duration information, and interpulse duration information. In some embodiments, the information obtained may be used to identify the sample.Type: ApplicationFiled: March 2, 2021Publication date: September 2, 2021Inventors: Gerard Schmid, Dajiang Yang, Eric A.G. Webster, Xin Wang, Todd Rearick, Changhoon Choi, Ali Kabiri, Kyle Preston, Brian Reed
-
Publication number: 20210218224Abstract: Disclosed herein are aspects of a pulsed laser light source for producing excitation light in an integrated bioanalytical system. In some embodiments, the light source comprises one or more laser diodes that produces pulsed light signals synchronized with a common clock source for excitation of samples within reaction chambers on at least one chip. The light source may be used to provide excitation for a system with a large sensor array with reduced cost, size and electrical power requirements.Type: ApplicationFiled: January 14, 2021Publication date: July 15, 2021Applicant: Quantum-Si IncorporatedInventors: Matthew DYER, Jonathan M. Rothberg, Brian Reed, Todd Rearick, Gerard Schmid, Faisal R. Ahmad, Michael Bellos, Benjamin Cipriany, Kyle Preston, Ali Kabiri
-
Publication number: 20210215605Abstract: Some aspects relate to integrated devices for obtaining timing and/or spectral information from incident light. In some embodiments, a pixel may include one or more charge storage regions configured to receive charge carriers generated responsive to incident photons from a light source, with charge carriers stored in the charge storage region(s) indicative of spectral and timing information. In some embodiments, a pixel may include regions having different depths, each configured to generate charge carriers responsive to incident photons. In some embodiments, a pixel may include multiple charge storage regions having different depths, and one or more of the charge storage regions may be configured to receive the incident photons and generate charge carriers therein. In some embodiments, a pixel may include an optical sorting element configured to direct at least some incident photons to one charge storage region and other incident photons to another charge storage region.Type: ApplicationFiled: January 14, 2021Publication date: July 15, 2021Inventors: Gerard Schmid, Dajiang Yang, Eric A.G. Webster, Xin Wang, Todd Rearick, Changhoon Choi, Ali Kabiri, Kyle Preston
-
Publication number: 20210215606Abstract: Systems and methods for optical power distribution within an integrated device, in a substantially uniform manner, to a large number of sample wells and/or other photonic elements. The integrated device and related instruments and systems may be used to analyze samples in parallel. The integrated device may include a grating coupler configured to receive light from an excitation source and optically couple with multiple waveguides configured to couple with sample wells. Vertical extents of optical modes of individual waveguides may be modulated to adjust confinement of light within the waveguides. This modulation may enable more uniform distribution of excitation light to the sample wells, improve excitation efficiency, and prevent overpower on regions of the integrated device.Type: ApplicationFiled: January 14, 2021Publication date: July 15, 2021Applicant: Quantum-Si IncorporatedInventors: Gerard Schmid, Sharath Hosali, James Beach, Kyle Preston, Ali Kabiri, Bing Shen
-
Publication number: 20210217800Abstract: Aspects of the technology described herein relate to improved semiconductor-based image sensor designs. In some embodiments, an integrated circuit may comprise a photodetection region and a drain region electrically coupled to the photodetection region, and the photodetection region may be configured to induce an intrinsic electric field in a direction from the photodetection region to the drain region(s). In some embodiments, a charge storage region and the drain region may be positioned on a same side of the photodetection region. In some embodiments, at least one drain layer may be configured to receive incident photons and/or charge carriers via the photodetection region. In some embodiments, an integrated circuit may comprise a plurality of pixels and a control circuit configured to control a transfer of charge carriers in the plurality of pixels.Type: ApplicationFiled: January 14, 2021Publication date: July 15, 2021Inventors: Eric A.G. Webster, Changhoon Choi, Dajiang Yang, Xin Wang, Todd Rearick, Kyle Preston, Ali Kabiri, Gerard Schmid
-
Publication number: 20210148821Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device may include multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes a surface having a trench region recessed from a portion of the surface and an array of sample wells, disposed in the trench region. The integrated device also includes a waveguide configured to couple excitation energy to at least one sample well in the array and positioned at a first distance from a surface of the trench region and at a second distance from the surface in a region separate from the trench region. The first distance is smaller than the second distance. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.Type: ApplicationFiled: January 28, 2021Publication date: May 20, 2021Applicant: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Gerard Schmid, Keith G. Fife, James Beach, Jason W. Sickler, Lawrence C. West, Paul E. Glenn, Kyle Preston, Farshid Ghasemi, Benjamin Cipriany, Jeremy Lackey
-
Publication number: 20210041625Abstract: Apparatus and methods for improving optical signal collection in an integrated device are described. A microdisk can be formed in an integrated device and increase collection and/or concentration of radiation incident on the microdisk and re-radiated by the microdisk. An example integrated device that can include a microdisk may be used for analyte detection and/or analysis. Such an integrated device may include a plurality of pixels, each having a reaction chamber for receiving a sample to be analyzed, an optical microdisk, and an optical sensor configured to detect optical emission from the reaction chamber. The microdisk can comprise a dielectric material having a first index of refraction that is embedded in one or more surrounding materials having one or more different refractive index values.Type: ApplicationFiled: August 7, 2020Publication date: February 11, 2021Applicant: Quantum-Si IncorporatedInventors: Ali Kabiri, Bing Shen, Gerard Schmid, James Beach, Kyle Preston, Sharath Hosali