Patents by Inventor Kyle Preston

Kyle Preston has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9217830
    Abstract: An electro-optic modulator structure, a method for fabricating the electro-optic modulator structure, a method for operating an electro-optic modulator device that derives from the electro-optic modulator structure and a related communications apparatus that includes the electro-optic modulator structure all are directed towards effecting a comparatively low voltage operation of the electro-optic modulator device predicated upon consideration of optimal charge carrier injection efficiency characteristics of a PIN diode charge carrier injection based micro-ring electro-optic modulator structure as a function of applied bias voltage. To realize the foregoing result, at least in part, the PIN diode charge carrier injection based electro-optic modulator structure includes at least one of a p-doped region and an n-doped region that has a relatively high volume dopant concentration at a surface thereof.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: December 22, 2015
    Assignee: CORNELL UNIVERSITY
    Inventors: Michal Lipson, Sasikanth Manipatruni, Long Chen, Kyle Preston
  • Patent number: 9153715
    Abstract: A silicon photonic photodetector structure, a method for fabricating the silicon photonic photodetector structure and a method for operating a silicon photonic photodetector device that results from the photonic photodetector structure each use a strip waveguide optically coupled with a polysilicon material photodetector layer that may be contiguous with a semiconductor material slab to which is located and formed a pair of electrical contacts separated by the polysilicon material photodetector layer. Alternatively, the pair of electrical contacts may be located and formed upon separated locations of the polysilicon photodetector layer.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: October 6, 2015
    Assignee: CORNELL UNIVERSITY
    Inventors: Michal Lipson, Kyle Preston
  • Publication number: 20150153228
    Abstract: Various embodiments of apparatuses, systems and methods are described herein for a spectrometer comprising at least two dispersive elements configured to receive at least one input optical signal and generate two or more pluralities of spatially separated spectral components, at least a portion of the at least two dispersive elements being implemented on a first substrate; and a single detector array coupled to the at least two dispersive elements and configured to receive and measure two or more pluralities of narrowband optical signals derived from the two or more pluralities of spatially separated spectral components, respectively.
    Type: Application
    Filed: December 24, 2014
    Publication date: June 4, 2015
    Applicant: TORNADO MEDICAL SYSTEMS, INC.
    Inventors: Kyle Preston, Arthur Nitkowski, Nicholas Sherwood, Arsen Hajian
  • Publication number: 20150129752
    Abstract: A silicon photonic photodetector structure, a method for fabricating the silicon photonic photodetector structure and a method for operating a silicon photonic photodetector device that results from the photonic photodetector structure each use a strip waveguide optically coupled with a polysilicon material photodetector layer that may be contiguous with a semiconductor material slab to which is located and formed a pair of electrical contacts separated by the polysilicon material photodetector layer. Alternatively, the pair of electrical contacts may be located and formed upon separated locations of the polysilicon photodetector layer.
    Type: Application
    Filed: October 13, 2014
    Publication date: May 14, 2015
    Applicant: CORNELL UNIVERSITY
    Inventors: Michal Lipson, Kyle Preston
  • Patent number: 8937717
    Abstract: Various embodiments of apparatuses, systems and methods are described herein for a spectrometer comprising at least two dispersive elements configured to receive at least one input optical signal and generate two or more pluralities of spatially separated spectral components, at least a portion of the at least two dispersive elements being implemented on a first substrate; and a single detector array coupled to the at least two dispersive elements and configured to receive and measure two or more pluralities of narrowband optical signals derived from the two or more pluralities of spatially separated spectral components, respectively.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: January 20, 2015
    Assignee: Tornado Medical Systems, Inc.
    Inventors: Kyle Preston, Arthur Nitkowski, Nicholas Sherwood, Arsen Hajian
  • Patent number: 8861909
    Abstract: A silicon photonic photodetector structure, a method for fabricating the silicon photonic photodetector structure and a method for operating a silicon photonic photodetector device that results from the photonic photodetector structure each use a strip waveguide optically coupled with a polysilicon material photodetector layer that may be contiguous with a semiconductor material slab to which is located and formed a pair of electrical contacts separated by the polysilicon material photodetector layer. Within the foregoing silicon photonic photodetector structure and related methods the polysilicon material photodetector layer includes defect states suitable for absorbing an optical signal from the strip waveguide and generating an electrical output signal using at least one of the electrical contacts when the optical signal includes a photon energy less than a band gap energy of a polysilicon material from which is comprised the polysilicon material photodetector layer.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: October 14, 2014
    Assignee: Cornell University
    Inventors: Michal Lipson, Kyle Preston
  • Patent number: 8805130
    Abstract: Novel integrated electro-optic structures such as modulators and switches and methods for fabrication of the same are disclosed in a variety of embodiments. In an illustrative embodiment, a device includes a substrate with a waveguide and an optical resonator comprising polycrystalline silicon positioned on the substrate. First and second doped semiconducting regions also comprise polycrystalline silicon and are positioned proximate to the first optical resonator. The first optical resonator is communicatively coupled to the waveguide.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: August 12, 2014
    Assignee: Cornell University
    Inventors: Michal Lipson, Sasikanth Manipatruni, Kyle Preston, Bradley Schmidt
  • Publication number: 20140085634
    Abstract: Various embodiments of apparatuses, systems and methods are described herein for a spectrometer comprising at least two dispersive elements configured to receive at least one input optical signal and generate two or more pluralities of spatially separated spectral components, at least a portion of the at least two dispersive elements being implemented on a first substrate; and a single detector array coupled to the at least two dispersive elements and configured to receive and measure two or more pluralities of narrowband optical signals derived from the two or more pluralities of spatially separated spectral components, respectively.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 27, 2014
    Inventors: Kyle Preston, Arthur Nitkowski, Nicholas Sherwood, Arsen Hajian
  • Publication number: 20140085633
    Abstract: Various embodiments of apparatuses, systems and methods are described herein related to a spectrometer that can generate a plurality of narrowband optical signals having a wavenumber linear format without using an increased number of optical components and without an increase in signal processing.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 27, 2014
    Inventors: Kyle Preston, Arthur Nitkowski
  • Publication number: 20140085632
    Abstract: Various embodiments of apparatuses, systems and methods are described herein for implementing pixel-shifting or an interpixel shift to increase the effective dispersion and effective spectral resolution of a spectrometer in a manner which is faster, less complicated and more robust compared to conventional techniques that employ mechanical motion to implement pixel-shifting in a spectrometer that uses free space optical components.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 27, 2014
    Inventors: Kyle Preston, Arthur Nitkowski
  • Publication number: 20130056623
    Abstract: An electro-optic modulator structure, a method for fabricating the electro-optic modulator structure, a method for operating an electro-optic modulator device that derives from the electro-optic modulator structure and a related communications apparatus that includes the electro-optic modulator structure all are directed towards effecting a comparatively low voltage operation of the electro-optic modulator device predicated upon consideration of optimal charge carrier injection efficiency characteristics of a PIN diode charge carrier injection based micro-ring electro-optic modulator structure as a function of applied bias voltage. To realize the foregoing result, at least in part, the PIN diode charge carrier injection based electro-optic modulator structure includes at least one of a p-doped region and an n-doped region that has a relatively high volume dopant concentration at a surface thereof.
    Type: Application
    Filed: May 13, 2011
    Publication date: March 7, 2013
    Applicant: CORNELL UNIVERSITY
    Inventors: Michal Lipson, Sasikanth Manipatruni, Long Chen, Kyle Preston
  • Publication number: 20120213468
    Abstract: A silicon photonic photodetector structure, a method for fabricating the silicon photonic photodetector structure and a method for operating a silicon photonic photodetector device that results from the photonic photodetector structure each use a strip waveguide optically coupled with a polysilicon material photodetector layer that may be contiguous with a semiconductor material slab to which is located and formed a pair of electrical contacts separated by the polysilicon material photodetector layer. Within the foregoing silicon photonic photodetector structure and related methods the polysilicon material photodetector layer includes defect states suitable for absorbing an optical signal from the strip waveguide and generating an electrical output signal using at least one of the electrical contacts when the optical signal includes a photon energy less than a band gap energy of a polysilicon material from which is comprised the polysilicon material photodetector layer.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 23, 2012
    Applicant: CORNELL UNIVERSITY
    Inventors: Michal Lipson, Kyle Preston
  • Publication number: 20110293216
    Abstract: Novel integrated electro-optic structures such as modulators and switches and methods for fabrication of the same are disclosed in a variety of embodiments. In an illustrative embodiment, a device includes a substrate with a waveguide and an optical resonator comprising polycrystalline silicon positioned on the substrate. First and second doped semiconducting regions also comprise polycrystalline silicon and are positioned proximate to the first optical resonator. The first optical resonator is communicatively coupled to the waveguide.
    Type: Application
    Filed: March 16, 2011
    Publication date: December 1, 2011
    Applicant: Cornell University
    Inventors: Michal Lipson, Sasikanth Manipatruni, Kyle Preston, Bradley Schmidt