Patents by Inventor Kyungmoo Ryu

Kyungmoo Ryu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160354158
    Abstract: Methods and systems are provided for generating a virtual venous image. The methods and systems utilize an intravascular mapping tool configured to be inserted into a venous structure of an object of interest. The methods and systems further acquire a plurality of position data points at predetermined intervals corresponding to a position of the intravascular mapping tool within the venous structure, and adjust each position data point based on at least one of a cardiac motion or a respiratory motion of the object of interest. The methods and systems also display a travelled path of the intravascular mapping tool on the display based on the adjusted position data points.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 8, 2016
    Inventors: Hoda Razavi, Kyungmoo Ryu
  • Publication number: 20160279419
    Abstract: An exemplary method for optimizing pacing configuration includes providing distances between electrodes of a series of three or more ventricular electrodes associated with a ventricle; selecting a ventricular electrode from the series; delivering energy to the ventricle via the selected ventricular electrode, the energy sufficient to cause an evoked response; acquiring signals of cardiac electrical activity associated with the evoked response via non-selected ventricular electrodes of the series; based on signals of cardiac electrical activity acquired via the non-selected ventricular electrodes and the distances, determining conduction velocities; based on the conduction velocities, deciding if the selected ventricular electrode is an optimal electrode for delivery of a cardiac pacing therapy; and, if the selected ventricular electrode comprises an optimal electrode for delivery of the cardiac pacing therapy, calling for delivery of the cardiac pacing therapy using the selected ventricular electrode.
    Type: Application
    Filed: June 3, 2016
    Publication date: September 29, 2016
    Applicant: PACESETTER, INC.
    Inventors: Kyungmoo Ryu, Xiaoyi Min
  • Patent number: 9421381
    Abstract: Techniques are provided for use with an implantable cardiac stimulation device equipped for multi-site left ventricular (MSLV) pacing using a multi-pole LV lead. In one example, MSLV interelectrode conduction delays are determined among the electrodes of the multi-pole LV lead. MSLV interelectrode pacing delays are then set based on the MSLV interelectrode conduction delays for use in delivering MSLV pacing. To this end, various criteria are exploited for determining optimal values for the pacing delays based on the interelectrode conduction delays. MSLV pacing is then controlled using the specified MSLV interelectrode pacing delays. In some examples, the optimization procedure is performed by the implantable device itself. In other examples, the procedure is performed by an external programmer device. In such an embodiment, the external device determines optimal MSLV interelectrode pacing delays and then transmits programming commands to the implantable device to program the device to use the pacing delays.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: August 23, 2016
    Assignee: Paceseter, Inc.
    Inventors: Kyungmoo Ryu, Stuart Rosenberg, Allen Keel
  • Patent number: 9381363
    Abstract: An exemplary method for optimizing pacing configuration includes providing distances between electrodes of a series of three or more ventricular electrodes associated with a ventricle; selecting a ventricular electrode from the series; delivering energy to the ventricle via the selected ventricular electrode, the energy sufficient to cause an evoked response; acquiring signals of cardiac electrical activity associated with the evoked response via non-selected ventricular electrodes of the series; based on signals of cardiac electrical activity acquired via the non-selected ventricular electrodes and the distances, determining conduction velocities; based on the conduction velocities, deciding if the selected ventricular electrode is an optimal electrode for delivery of a cardiac pacing therapy; and, if the selected ventricular electrode comprises an optimal electrode for delivery of the cardiac pacing therapy, calling for delivery of the cardiac pacing therapy using the selected ventricular electrode.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: July 5, 2016
    Assignee: Pacesetter, Inc.
    Inventors: Kyungmoo Ryu, Xiaoyi Min
  • Patent number: 9327131
    Abstract: Evaluation of an implanted electrical lead condition includes comparing electrogram template features with test electrogram features. The evaluating also includes determining the implanted electrical lead condition based solely on the electrogram comparison. The compared test electrogram features and template electrogram features may be atrial amplitudes and ventricular amplitudes. The sensing may be with a quad polar lead. The compared test electrogram features and electrogram template features may account for different patient postures and/or may account for respiration modulation.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: May 3, 2016
    Assignee: PACESETTER, INC.
    Inventors: Kyungmoo Ryu, Stuart Rosenberg, Edward Karst
  • Patent number: 9314191
    Abstract: A method and system are provided to measure cardiac motion data using a cardiovascular navigation system. The method and system position a patient reference sensor (PRS) on a patient, wherein the PRS determines a position of the patient relative to a reference point. The method and system determine a reference orientation matrix based on an orientation of the PRS relative to a reference point and determining a normalization time based on an electrical signal. The method and system obtain point specific (PS) motion data for a plurality of map points. The PS motion data indicates a three dimensional trajectory that occurs at the corresponding map point on a wall of a heart of the patient during at least one cardiac cycle. Further the method and system compensate the PS motion data based on the PRS.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: April 19, 2016
    Assignee: Pacesetter, Inc.
    Inventors: Hoda Razavi, Yelena Nabutovsky, Kyungmoo Ryu
  • Patent number: 9301713
    Abstract: A method and system are provided for analyzing motion data collected by a cardiovascular navigation system to determine a level of dyssynchrony exhibited by a heart. The method and system comprise obtaining a motion data (MD) set that includes a plurality of map point specific motion data (PSMD) collections of motion data. The motion data in each PSMD collection includes information indicating an amount and direction of motion that occurred at a corresponding map point on a wall of the heart during a select period of time, such as during at least one cardiac cycle. The method and system divide the PSMD collections of data into sectors which may be associated with corresponding phases of the cardiac cycle, and analyze the sectors of the PSMD collections to determine at least one of a slope, a magnitude and a direction of motion at the corresponding map point of the wall of the heart during the associated sector.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: April 5, 2016
    Assignee: Pacesetter, Inc.
    Inventors: Yelena Nabutovsky, Hoda Razavi, Kyungmoo Ryu
  • Patent number: 9302099
    Abstract: A method and system are provided that provide feedback regarding lead stability for a candidate target vessel, and provide guidance on a type of lead to be used. The method and system utilize a surgical navigation system and information regarding patient anatomy to predict lead stability within the patient anatomy. The method and system provide patient-specific force measurements for one or more vessels of a patient.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: April 5, 2016
    Assignee: Pacesetter, Inc.
    Inventors: Hoda Razavi, Yelena Nabutovsky, Rohan A. More, Kyungmoo Ryu, Luke C. McSpadden
  • Patent number: 9254391
    Abstract: Pacing related timing is determined for an implantable medical device (IMD) by pacing at an RV pacing site, a first LV pacing site and a second LV pacing site in accordance with a first site, a second site and a third site pacing order, and further in accordance with a first inter-electrode pacing delay between pacing at the first site and pacing at the second site and a second inter-electrode pacing delay between pacing at the second site and pacing at the third site. At least one of a sensed event or a paced event is detected for at each of the second site and the third site. The first inter-electrode pacing delay and the second inter-electrode pacing delay are adjusted to avoid sensed events in favor of paced events at each of the second site and the third site. An atrio-ventricular delay may also be adjusted to avoid sensed events or lack of capture due to possible fusion at the first site, in favor of paced events at the first site.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: February 9, 2016
    Assignee: Pacesetter, Inc.
    Inventors: Kyungmoo Ryu, Tomas Svensson, Stuart Rosenberg
  • Publication number: 20160000372
    Abstract: Specific embodiments of the present invention determine a range of a physiologic property, for each of a plurality of periods of time, and monitor changes in the patient's heart disease based on changes in the range. Other embodiments determine a minimum of a physiologic property, for each of a plurality of periods of time, and monitor changes in the patient's heart disease based on changes in the minimum. Still other embodiments determine a maximum of the physiologic property, for each of a plurality of periods of time, and monitor changes in the patient's heart disease based on changes in the maximum.
    Type: Application
    Filed: September 15, 2015
    Publication date: January 7, 2016
    Inventors: Yelena Nabutovsky, Kyungmoo Ryu, Taraneh Ghaffari Farazi, Gene A. Bornzin
  • Publication number: 20150313480
    Abstract: A method and system is provided for calculating a strain from characterization motion data. The method and system utilize an intravascular mapping tool configured to be inserted into at least one of the endocardial or epicardial space. The mapping tool is maneuvered to select locations proximate to surfaces of the heart, while collecting map points at the select locations to form a point cloud data set during at least one cardiac cycle. The method and system further include automatically assigning segment identifiers (IDs) to the map points based on a position of the map point within the point cloud data set. The method and system further select a first and second reference from a group of map points. Further, the method and system calculate a linear strain based on an instantaneous distance and a reference distance between the first and second references.
    Type: Application
    Filed: May 5, 2014
    Publication date: November 5, 2015
    Applicant: Pacesetter Inc.
    Inventors: Hoda Razavi, Kyungmoo Ryu, Yelena Nabutovsky
  • Publication number: 20150314121
    Abstract: A method and system are provided that provide feedback regarding lead stability for a candidate target vessel, and provide guidance on a type of lead to be used. The method and system utilize a surgical navigation system and information regarding patient anatomy to predict lead stability within the patient anatomy. The method and system provide patient-specific force measurements for one or more vessels of a patient.
    Type: Application
    Filed: May 4, 2015
    Publication date: November 5, 2015
    Inventors: Hoda Razavi, Yelena Nabutovsky, Rohan A. More, Kyungmoo Ryu, Luke C. McSpadden
  • Patent number: 9174054
    Abstract: Specific embodiments of the present invention determine a range of a physiologic property, for each of a plurality of periods of time, and monitor changes in the patient's heart disease based on changes in the range. Other embodiments determine a minimum of a physiologic property, for each of a plurality of periods of time, and monitor changes in the patient's heart disease based on changes in the minimum. Still other embodiments determine a maximum of the physiologic property, for each of a plurality of periods of time, and monitor changes in the patient's heart disease based on changes in the maximum.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: November 3, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Yelena Nabutovsky, Kyungmoo Ryu, Taraneh Ghaffari Farazi, Gene A. Bornzin
  • Patent number: 9174052
    Abstract: The present disclosure provides systems and methods for neurostimulation. The method includes applying electrical stimulation to a patient using a paddle lead that includes a plurality of electrodes, acquiring local impedances associated with at least some of the plurality of electrodes, wherein the local impedances are indicative of electrode-tissue contact and effectiveness of the electrical stimulation, transmitting the local impedances data to a computing device, and processing the local impedances data using the computing device to adjust the amplitude of stimulations and electrode configurations, and monitor electrode-tissue contact status over time.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: November 3, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Yelena Nabutovsky, Fujian Qu, Lalit Venkatesan, Kyungmoo Ryu
  • Patent number: 9125585
    Abstract: An exemplary method includes positioning a lead in a patient where the lead has a longitudinal axis that extends from a proximal end to a distal end and where the lead includes an electrode with an electrical center offset from the longitudinal axis of the lead body; measuring electrical potential in a three-dimensional potential field using the electrode; and based on the measuring and the offset of the electrical center, determining lead roll about the longitudinal axis of the lead body where lead roll may be used for correction of field heterogeneity, placement or navigation of the lead or physiological monitoring (e.g., cardiac function, respiration, etc.). Various other methods, devices, systems, etc., are also disclosed.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: September 8, 2015
    Assignee: PACESETTER, INC.
    Inventors: Stuart Rosenberg, Thao Ngo, Kyungmoo Ryu, Kjell Noren, Allen Keel, Wenbo Hou, Steve Koh, Michael Yang
  • Patent number: 9125584
    Abstract: An exemplary method includes positioning a lead in a patient where the lead has a longitudinal axis that extends from a proximal end to a distal end and where the lead includes an electrode with an electrical center offset from the longitudinal axis of the lead body; measuring electrical potential in a three-dimensional potential field using the electrode; and based on the measuring and the offset of the electrical center, determining lead roll about the longitudinal axis of the lead body where lead roll may be used for correction of field heterogeneity, placement or navigation of the lead or physiological monitoring (e.g., cardiac function, respiration, etc.). Various other methods, devices, systems, etc., are also disclosed.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: September 8, 2015
    Assignee: PACESETTER, INC.
    Inventors: Stuart Rosenberg, Thao Ngo, Kyungmoo Ryu, Kjell Noren, Allen Keel, Wenbo Hou, Steve Koh, Michael Yang
  • Patent number: 9095264
    Abstract: A method of identifying potential driver sites for cardiac arrhythmias includes acquiring a plurality of electrograms from a plurality of locations on at least a portion of a patient's heart. Using the acquired electrograms, at least one electrical activity map is generated. Desirable electrical activity maps include complex fractionated electrogram standard deviation and mean maps, dominant frequency maps, peak-to-peak voltage maps, and activation sequence maps. Using one or more of these maps (e.g., by analyzing one or more electrogram morphological characteristics represented by these maps), at least one potential driver site can be detected.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: August 4, 2015
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Kyungmoo Ryu, Valtino X. Afonso
  • Patent number: 9095720
    Abstract: Various embodiments of the present invention are directed to, or are for use with, an implantable system including a lead having multiple electrodes implantable in a patient's left ventricular (LV) chamber. In accordance with an embodiment, the patient's LV chamber is paced at first and second sites within the LV chamber using a programmed LV1-LV2 delay, wherein the LV1-LV2 delay is a programmed delay between when first and second pacing pulses are to be delivered respectively at the first and second sites within the LV chamber. Evoked responses to the first and second pacing pulses are monitored for, and one or more LV pacing parameter is/are adjusted and/or one or more backup pulse is/are delivered based on results of the monitoring.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: August 4, 2015
    Assignee: PACESETTER, INC.
    Inventors: Allen Keel, Kyungmoo Ryu, Stuart Rosenberg
  • Patent number: 9044620
    Abstract: Described herein are implantable systems and devices, and methods for use therewith, that can be used to perform arrhythmia discrimination based on activation times. A plurality of different sensing vectors are used to obtain a plurality of IEGMs that collectively enable electrical activations to be detected in the left atrial (LA) chamber, the right atrial (RA) chamber, and at least one ventricular chamber of a patient's heart. For each of a plurality of cardiac cycles, there is a determination, based on the plurality of obtained IEGMs, of an LA activation time, an RA activation time, and a ventricular activation time. Arrhythmia discrimination is then performed based on the determined activation times.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: June 2, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Allen Keel, Kyungmoo Ryu, Stuart Rosenberg
  • Publication number: 20150141858
    Abstract: A method and system are provided to measure cardiac motion data using a cardiovascular navigation system. The method and system position a patient reference sensor (PRS) on a patient, wherein the PRS determines a position of the patient relative to a reference point. The method and system determine a reference orientation matrix based on an orientation of the PRS relative to a reference point and determining a normalization time based on an electrical signal. The method and system obtain point specific (PS) motion data for a plurality of map points. The PS motion data indicates a three dimensional trajectory that occurs at the corresponding map point on a wall of a heart of the patient during at least one cardiac cycle. Further the method and system compensate the PS motion data based on the PRS.
    Type: Application
    Filed: July 10, 2014
    Publication date: May 21, 2015
    Inventors: Hoda Razavi, Yelena Nabutovsky, Kyungmoo Ryu