Patents by Inventor L. Terry Boatman
L. Terry Boatman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10100962Abstract: A fluid swivel including a stationary inner housing assembly and a rotatable outer housing operatively connected to the inner housing assembly. The outer housing includes an annular passage with upper and lower surfaces. Upper and lower seals are positioned between the inner housing assembly and the outer housing in seal recesses. A passage in the inner housing assembly provides fluid of pressure to the annular passage. The fluid exerts a first force axially inward on outer housing outer surfaces, and a larger second force axially outward on the annular passage's upper and lower surfaces. The second force is greater than the first force so upper and lower ring portions deflect outward such that the elastic axial deflections of the inner housing assembly match the axial deflections of the outer housing, thereby causing the axial clearances between the components at the upper and lower seals to remain almost the same.Type: GrantFiled: August 12, 2016Date of Patent: October 16, 2018Assignee: Sofec, Inc.Inventors: L. Terry Boatman, Stephane Roy
-
Patent number: 10059402Abstract: A high pressure swivel is disclosed which includes swivel modules each having a stationary inner structure and a rotatable outer structure that can rotate about the inner structure. The inner structure of each module has the same number of vertical passages as the others. The inner structure of each module has a circumferential flange on the top and on a bottom lip so that each swivel unit can be secured to another swivel in its top or bottom with clamps around the flanges. The inner structures are rotatably positioned with respect to each other when assembled so that a vertical passage from a stationary base manifold to an outlet on the rotatable outer structure is formed. Various combinations of standard swivel modules can be assembled to accommodate specific swivel stack requirements for flow capacity and separate or comingled flow paths.Type: GrantFiled: July 2, 2015Date of Patent: August 28, 2018Assignee: SOFEC, INC.Inventors: L. Terry Boatman, Stephane Roy
-
Patent number: 9605786Abstract: A fluid swivel that includes a stationary annular structure defining upper and lower annular seal recesses, and a rotatable outer housing operatively connected to the stationary annular structure, the outer housing defining an annular passage that has upper and lower surfaces. Upper and lower seals are positioned between the stationary annular structure and the rotatable outer housing and disposed in the upper and lower seal recesses. An inner housing bore is disposed in the stationary annular structure and arranged to provide fluid of pressure P to the annular passage, the fluid exerting a first force (Fv1) longitudinally inwardly on the outer surface of the outer housing, and a second force (Fv2) longitudinally outwardly on the upper and lower surfaces of the annular passage, the second force (Fv2) having a greater magnitude than the first force (Fv1) so the outer housing deflects outwardly, pushing the upper and lower seals into the upper and lower seal recesses.Type: GrantFiled: February 11, 2014Date of Patent: March 28, 2017Assignee: SOFEC, Inc.Inventors: L. Terry Boatman, Stephane Roy
-
Publication number: 20170002964Abstract: A high pressure swivel is disclosed which includes swivel modules each having a stationary inner structure and a rotatable outer structure that can rotate about the inner structure. The inner structure of each module has the same number of vertical passages as the others. The inner structure of each module has a circumferential flange on the top and on a bottom lip so that each swivel unit can be secured to another swivel in its top or bottom with clamps around the flanges. The inner structures are rotatably positioned with respect to each other when assembled so that a vertical passage from a stationary base manifold to an outlet on the rotatable outer structure is formed. Various combinations of standard swivel modules can be assembled to accommodate specific swivel stack requirements for flow capacity and separate or commingled flow paths.Type: ApplicationFiled: July 2, 2015Publication date: January 5, 2017Applicant: SOFEC, INC.Inventors: L. Terry Boatman, Stephane Roy
-
Publication number: 20160369924Abstract: A fluid swivel including a stationary inner housing assembly and a rotatable outer housing operatively connected to the inner housing assembly. The outer housing includes an annular passage with upper and lower surfaces. Upper and lower seals are positioned between the inner housing assembly and the outer housing in seal recesses. A passage in the inner housing assembly provides fluid of pressure to the annular passage. The fluid exerts a first force axially inward on outer housing outer surfaces, and a larger second force axially outward on the annular passage's upper and lower surfaces. The second force is greater than the first force so upper and lower ring portions deflect outward such that the elastic axial deflections of the inner housing assembly match the axial deflections of the outer housing, thereby causing the axial clearances between the components at the upper and lower seals to remain almost the same.Type: ApplicationFiled: August 12, 2016Publication date: December 22, 2016Applicant: SOFEC, Inc.Inventors: L. Terry Boatman, Stephane Roy
-
Publication number: 20150226358Abstract: A fluid swivel (10A) that includes a stationary annular structure (16A, 17A) defining upper and lower annular seal slots (61, 62), and a rotatable outer housing (20A) operatively connected to the stationary annular structure (16A, 17A), the outer housing defining a radial groove (30) that has upper and lower surfaces. Upper and lower seals (40, 41) are positioned between the stationary annular structure (16a, 17a) and the rotatable outer housing (20a) and disposed in the upper and lower seal slots (61, 62).Type: ApplicationFiled: February 11, 2014Publication date: August 13, 2015Applicant: SOFEC, INC.Inventors: L. Terry Boatman, Stephane Roy
-
Patent number: 8186170Abstract: An LNG terminal is disclosed which includes an offshore mooring turret, an LNG storage vessel operatively coupled to the mooring turret, the LNG storage vessel including at least one LNG storage tank for the storage of liquid natural gas and a regasification vessel operatively coupled to the LNG storage vessel. A method of operating an offshore LNG terminal is also disclosed which includes obtaining liquefied natural gas from at least one LNG storage tank on an LNG storage vessel that is operatively coupled to a mooring turret, regasifying the liquefied natural gas from the LNG storage vessel using a regasification vessel operatively coupled to the LNG storage vessel, and supplying the regasified gas to at least one subsea pipeline via the mooring turret.Type: GrantFiled: May 29, 2007Date of Patent: May 29, 2012Assignee: Sofec, Inc.Inventors: L. Terry Boatman, Yonghui Liu
-
Patent number: 7926436Abstract: A chain support 11, hinged on two perpendicular axes 5, 6 which allows chain movement in two perpendicular planes. The chain support provides an improved arrangement to allow chain 4 to be pulled through the center of the apparatus to a desired length after which the chain is removably secured to the chain support.Type: GrantFiled: January 15, 2009Date of Patent: April 19, 2011Assignee: SOFEC Inc.Inventors: L. Terry Boatman, Stephen P. Lindblade
-
Publication number: 20100175604Abstract: A chain support 11, hinged on two perpendicular axes 5, 6 which allows chain movement in two perpendicular planes. The chain support provides an improved arrangement to allow chain 4 to be pulled through the center of the apparatus to a desired length after which the chain is removably secured to the chain support.Type: ApplicationFiled: January 15, 2009Publication date: July 15, 2010Inventors: L. Terry Boatman, Stephen P. Lindblade
-
Patent number: 7717762Abstract: A mooring system comprising a submerged buoy releasably connectable to a vessel keel having a combined axial/radial bearing. A segmented ring, fastened to the buoy, forms the bearing outer ring. An inner bearing hub slidingly carried on the bearing outer ring is connectable to a vessel structural connector. In a first embodiment, the structural connector includes an inner cylindrical sleeve coaxially movable within an outer cylindrical housing by circumferential actuators. The lower ends of the connector sleeve and connector housing capture plural collet segments circumpositioned therebetween that radially move in and out as the connector sleeve is moved axially within the connector housing. The lower ends of the collet segments extend downward into the bearing hub and releasably engage an interior groove therein, thereby dogging the bearing hub against the vessel. In a second embodiment, the bearing hub is simply bolted directly to a cylindrical connector member of the vessel.Type: GrantFiled: February 16, 2007Date of Patent: May 18, 2010Assignee: SOFEC, Inc.Inventors: L. Terry Boatman, Stephen P. Lindblade
-
Patent number: 7543543Abstract: A floating terminal for offloading an LNG carrier vessel in the sea. The floating terminal of open frame construction is moored toward its front end with a rotatable mooring arrangement so that the terminal may weathervane in response to environmental forces. Marine thrusters are provided at the aft end of the terminal for swinging the terminal away from and back toward a line defined by the path toward the terminal of an approaching LNG carrier. Offloading equipment and heat exchangers are provided on a deck of the floating structure. When an LNG carrier vessel approaches the terminal, the thrusters swing the floating terminal away from the carrier vessel approach line while a hawser at the front end of the terminal pulls the vessel close to the terminal. The floating terminal swings back toward the carrier vessel in response to operating the marine thrusters in an opposite direction until the carrier vessel and floating terminal are side-by-side.Type: GrantFiled: October 19, 2007Date of Patent: June 9, 2009Assignee: Sofec, Inc.Inventors: L. Terry Boatman, Yonghui Liu
-
Publication number: 20080295526Abstract: An LNG terminal is disclosed which includes an offshore mooring turret, an LNG storage vessel operatively coupled to the mooring turret, the LNG storage vessel including at least one LNG storage tank for the storage of liquid natural gas and a regasification vessel operatively coupled to the LNG storage vessel. A method of operating an offshore LNG terminal is also disclosed which includes obtaining liquefied natural gas from at least one LNG storage tank on an LNG storage vessel that is operatively coupled to a mooring turret, regasifying the liquefied natural gas from the LNG storage vessel using a regasification vessel operatively coupled to the LNG storage vessel, and supplying the regasified gas to at least one subsea pipeline via the mooring turret.Type: ApplicationFiled: May 29, 2007Publication date: December 4, 2008Inventors: L. Terry Boatman, Yonghui Liu
-
Patent number: 7451718Abstract: Apparatus for mooring a vessel to the seabed comprising a turret that is connected to the vessel for rotation about a vertical axis defined thereby and axial/radial bearing structure that can absorb axial and radial forces. The turret is connected at its lower end to a chain table or buoy for attaching mooring lines. The turret is disposed inside the hull of the vessel within a fixed tube. An outer ring of the axial/radial bearing is mounted to a rigid ring, which in turn is fastened by a flexible tube to the lower end of the fixed tube at an elevation below the rigid ring. The fixed tube encloses the turret with clearance. Deformation of the hull due to wind and waves is inhibited to the bearing, because hull deformation is absorbed by the flexible tube that couples the rigid ring to the vessel hull.Type: GrantFiled: January 31, 2008Date of Patent: November 18, 2008Assignee: SOFEC, Inc.Inventors: L. Terry Boatman, Stephen P. Lindblade
-
Publication number: 20080274655Abstract: A floating terminal for offloading an LNG carrier vessel in the sea. The floating terminal of open frame construction is moored toward its front end with a rotatable mooring arrangement so that the terminal may weathervane in response to environmental forces. Marine thrusters are provided at the aft end of the terminal for swinging the terminal away from and back toward a line defined by the path toward the terminal of an approaching LNG carrier. Offloading equipment and heat exchangers are provided on a deck of the floating structure. When an LNG carrier vessel approaches the terminal, the thrusters swing the floating terminal away from the carrier vessel approach line while a hawser at the front end of the terminal pulls the vessel close to the terminal. The floating terminal swings back toward the carrier vessel in response to operating the marine thrusters in an opposite direction until the carrier vessel and floating terminal are side-by-side.Type: ApplicationFiled: October 19, 2007Publication date: November 6, 2008Inventors: L. Terry Boatman, Yonghui Liu
-
Publication number: 20080182467Abstract: Apparatus for mooring a vessel to the seabed comprising a turret that is connected to the vessel for rotation about a vertical axis defined thereby and axial/radial bearing structure that can absorb axial and radial forces. The turret is connected at its lower end to a chain table or buoy for attaching mooring lines. The turret is disposed inside the hull of the vessel within a fixed tube. An outer ring of the axial/radial bearing is mounted to a rigid ring, which in turn is fastened by a flexible tube to the lower end of the fixed tube at an elevation below the rigid ring. The fixed tube encloses the turret with clearance. Deformation of the hull due to wind and waves is inhibited to the bearing, because hull deformation is absorbed by the flexible tube that couples the rigid ring to the vessel hull.Type: ApplicationFiled: January 31, 2008Publication date: July 31, 2008Inventors: L. Terry Boatman, Stephen P. Lindblade
-
Patent number: 7325508Abstract: A support assembly for a mooring line of a floating vessel comprises a trunnion block which is pivotally supported on the vessel and a stopper block to which the mooring line is releasably secured. One of the trunnion block and the stopper block comprises a convex surface and the other of the trunnion block and the stopper block comprises a concave surface. In operation, the convex surface engages the concave surface to thereby pivotally support the stopper block on the trunnion block.Type: GrantFiled: March 24, 2005Date of Patent: February 5, 2008Assignee: SOFEC, Inc.Inventors: L. Terry Boatman, William L. Fontenot, Roger D. Mickan
-
Patent number: 7299760Abstract: A floating terminal for offloading an LNG carrier vessel in the sea. The floating terminal of open frame construction is moored toward its front end with a rotatable mooring arrangement so that the terminal may weathervane in response to environmental forces. Marine thrusters are provided at the aft end of the terminal for swinging the terminal away from and back toward a line defined by the path toward the terminal of an approaching LNG carrier. Offloading equipment and heat exchangers are provided on a deck of the floating structure. When an LNG carrier vessel approaches the terminal, the thrusters swing the floating terminal away from the carrier vessel approach line while a hawser at the front end of the terminal pulls the vessel close to the terminal. The floating terminal swings back toward the carrier vessel in response to operating the marine thrusters in an opposite direction until the carrier vessel and floating terminal are side-by-side.Type: GrantFiled: March 4, 2005Date of Patent: November 27, 2007Assignee: Sofec, Inc.Inventors: L. Terry Boatman, Yonghui Liu
-
Publication number: 20070264889Abstract: A mooring system comprising a submerged buoy releasably connectable to a vessel keel having a combined axial/radial bearing. A segmented ring, fastened to the buoy, forms the bearing outer ring. An inner bearing hub slidingly carried on the bearing outer ring is connectable to a vessel structural connector. In a first embodiment, the structural connector includes an inner cylindrical sleeve coaxially movable within an outer cylindrical housing by circumferential actuators. The lower ends of the connector sleeve and connector housing capture plural collet segments circumpositioned therebetween that radially move in and out as the connector sleeve is moved axially within the connector housing. The lower ends of the collet segments extend downward into the bearing hub and releasably engage an interior groove therein, thereby dogging the bearing hub against the vessel. In a second embodiment, the bearing hub is simply bolted directly to a cylindrical connector member of the vessel.Type: ApplicationFiled: February 16, 2007Publication date: November 15, 2007Inventors: L. Terry Boatman, Stephen P. Lindblade
-
Patent number: 7225749Abstract: A turret mooring system for a vessel which includes a concrete hull and a moonpool which extends generally vertically through the hull comprises a turret which is positioned in the moonpool, an upper bearing substructure which is mounted to the hull proximate an upper end of the moonpool, and an upper bearing which includes a non-rotatable part that is connected to an upper end portion of the turret and a rotatable part that is connected to the upper bearing substructure. Thus, the turret is rotatably connected to the hull via the upper bearing and the upper bearing substructure.Type: GrantFiled: July 26, 2004Date of Patent: June 5, 2007Assignee: SOFEC, Inc.Inventor: L. Terry Boatman
-
Patent number: 7073457Abstract: An offshore offloading system for hydrocarbon products from a storage station such as an LNG/FPSO to a shuttle vessel. The system includes a yoke mooring arrangement having a yoke and a connection assembly. One end of the yoke is selectively disconnectable to the shuttle vessel, while the other end of the yoke is rotatably connected to an end of the connection assembly which has its other end rotatably connected to a frame which extends from an end of the storage station. The yoke and connection assembly are arranged such that a transverse force in the lateral or y-direction moves the end of the yoke less than twice the movement of the yoke in response to an x-direction force. The system also includes arrangements for providing a hydrocarbon fluid flow path from the storage station to the shuttle vessel when the shuttle vessel is disconnectably moored to the storage station.Type: GrantFiled: August 6, 2003Date of Patent: July 11, 2006Assignee: FMC Technologies, Inc.Inventor: L. Terry Boatman