Patents by Inventor Lai ZHAO

Lai ZHAO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11600642
    Abstract: Embodiments of the present disclosure generally relate to a layer stack including a high K dielectric layer formed over a first dielectric layer and a metal electrode. The high K dielectric layer has a K value of 20 or higher and may be formed as a part of a capacitor, a gate insulating layer, or any suitable insulating layer in electronic devices, such as display devices. The layer stack includes a second dielectric layer disposed on the first dielectric layer and the metal layer, and the high K dielectric layer containing zirconium dioxide or hafnium dioxide disposed on the second dielectric layer. The second dielectric layer provides a homogenous surface on which the high K dielectric layer is formed. The homogeneous surface enables the high K dielectric material to be deposited uniformly thereover, resulting in a uniform thickness profile.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: March 7, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xiangxin Rui, Soo Young Choi, Shinichi Kurita, Yujia Zhai, Lai Zhao
  • Publication number: 20220293793
    Abstract: Embodiments described herein provide thin film transistors (TFTs) and processes to reduce plasma induced damage in TFTs. In one embodiment, a buffer layer is disposed over a substrate and a semiconductor layer is disposed over the buffer layer. A gate dielectric layer is disposed over the semiconductor layer. The gate dielectric layer contacts the semiconductor layer at an interface. The gate electrode 204 is disposed over the gate dielectric layer. The gate dielectric layer has a Dit of about 5e10 cm?2eV?1 to about 5e11 cm?2eV?1 and a hysteresis of about 0.10 V to about 0.30 V improve performance capability of the TFT while having a breakdown field between about 6 MV/cm and about 10 MV/cm.
    Type: Application
    Filed: June 2, 2022
    Publication date: September 15, 2022
    Inventors: Jianheng LI, Lai ZHAO, Yujia ZHAI, Soo Young CHOI
  • Patent number: 11380801
    Abstract: Embodiments described herein provide thin film transistors (TFTs) and processes to reduce plasma induced damage in TFTs. In one embodiment, a buffer layer is disposed over a substrate and a semiconductor layer is disposed over the buffer layer. A gate dielectric layer is disposed over the semiconductor layer. The gate dielectric layer contacts the semiconductor layer at an interface. The gate electrode is disposed over the gate dielectric layer. The gate dielectric layer has a Dit of about 5e10 cm?2 eV?1 to about 5e11 cm?2 eV?1 and a hysteresis of about 0.10 V to about 0.30 V improve performance capability of the TFT while having a breakdown field between about 6 MV/cm and about 10 MV/cm.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: July 5, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Jianheng Li, Lai Zhao, Yujia Zhai, Soo Young Choi
  • Publication number: 20220130873
    Abstract: Embodiments of the disclosure generally provide methods of forming a capacitor layer or a gate insulating layer with high dielectric constant as well as low film current leakage and desired film qualities for display applications. In one embodiment, a thin film transistor structure includes a dielectric layer formed on a substrate, wherein the dielectric layer is a zirconium containing material comprising aluminum, and gate, source and drain electrodes formed on the substrate, wherein the gate, source and drain electrodes formed above or below the dielectric layer.
    Type: Application
    Filed: January 7, 2022
    Publication date: April 28, 2022
    Inventors: Xiangxin RUI, Lai ZHAO, Jrjyan Jerry CHEN, Soo Young CHOI, Yujia ZHAI
  • Patent number: 11239258
    Abstract: Embodiments of the disclosure generally provide methods of forming a capacitor layer or a gate insulating layer with high dielectric constant as well as low film current leakage and desired film qualities for display applications. In one embodiment, a thin film transistor structure includes a dielectric layer formed on a substrate, wherein the dielectric layer is a zirconium containing material comprising aluminum, and gate, source and drain electrodes formed on the substrate, wherein the gate, source and drain electrodes formed above or below the dielectric layer.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: February 1, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Xiangxin Rui, Lai Zhao, Jrjyan Jerry Chen, Soo Young Choi, Yujia Zhai
  • Publication number: 20220013547
    Abstract: Embodiments of the disclosure generally provide methods of forming a hybrid film stack that may be used as a capacitor layer or a gate insulating layer with a high dielectric constant as well as film qualities for display applications. In one embodiment, a thin film transistor structure include gate, source and drain electrodes formed on a substrate, and an insulating layer formed on a substrate, wherein the insulating layer is a hybrid film stack having a dielectric layer comprising a zirconium containing material disposed on an interface layer formed above or below the gate, source and drain electrodes.
    Type: Application
    Filed: September 28, 2021
    Publication date: January 13, 2022
    Inventors: Xiangxin RUI, Lai ZHAO, Jrjyan Jerry CHEN, Soo Young CHOI, Yujia ZHAI
  • Publication number: 20210376032
    Abstract: Disclosed herein is a sub-pixel circuit for a display device. The sub-pixel circuit has a driving TFT and at least one switching TFT. The at least one switching TFT is an oxide TFT. The sub-pixel circuit additionally has at least one storage capacitor wherein the storage capacitor has a capacitance between about 1 fF and about 55 fF.
    Type: Application
    Filed: July 21, 2021
    Publication date: December 2, 2021
    Inventors: Jung Bae KIM, Dong Kil YIM, Soo Young CHOI, Lai ZHAO
  • Patent number: 11145683
    Abstract: Embodiments of the disclosure generally provide methods of forming a hybrid film stack that may be used as a capacitor layer or a gate insulating layer with a high dielectric constant as well as film qualities for display applications. In one embodiment, a thin film transistor structure include gate, source and drain electrodes formed on a substrate, and an insulating layer formed on a substrate, wherein the insulating layer is a hybrid film stack having a dielectric layer comprising a zirconium containing material disposed on an interface layer formed above or below the gate, source and drain electrodes.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: October 12, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Xiangxin Rui, Lai Zhao, Jrjyan Jerry Chen, Soo Young Choi, Yujia Zhai
  • Patent number: 11123837
    Abstract: Methods for manufacturing a diffuser plate for a PECVD chamber are provided. The methods provide for applying a compliant abrasive medium to round the sharp edges at corners of the output holes on a contoured downstream side of a gas diffuser plate. By rounding the edges of the output holes reduces the flaking of deposited materials on the downstream side of the gas diffuser plate and reduces the amount of undesirable particles generated during the PECVD deposition process.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: September 21, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Ilyoung Hong, Lai Zhao, Jianhua Zhou, Robin L. Tiner, Gaku Furuta, Shinichi Kurita, Soo Young Choi
  • Publication number: 20210288084
    Abstract: Embodiments of the present disclosure generally relate to a layer stack including a high K dielectric layer formed over a first dielectric layer and a metal electrode. The high K dielectric layer has a K value of 20 or higher and may be formed as a part of a capacitor, a gate insulating layer, or any suitable insulating layer in electronic devices, such as display devices. The layer stack includes a second dielectric layer disposed on the first dielectric layer and the metal layer, and the high K dielectric layer containing zirconium dioxide or hafnium dioxide disposed on the second dielectric layer. The second dielectric layer provides a homogenous surface on which the high K dielectric layer is formed. The homogeneous surface enables the high K dielectric material to be deposited uniformly thereover, resulting in a uniform thickness profile.
    Type: Application
    Filed: May 27, 2021
    Publication date: September 16, 2021
    Inventors: Xiangxin RUI, Soo Young CHOI, Shinichi KURITA, Yujia ZHAI, Lai ZHAO
  • Patent number: 11101338
    Abstract: Disclosed herein is a sub-pixel circuit for a display device. The sub-pixel circuit has a driving TFT and at least one switching TFT. The at least one switching TFT is an oxide TFT. The sub-pixel circuit additionally has at least one storage capacitor wherein the storage capacitor has a capacitance between about 1 fF and about 55 fF.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: August 24, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jung Bae Kim, Dong-Kil Yim, Soo Young Choi, Lai Zhao
  • Patent number: 11049887
    Abstract: Embodiments of the present disclosure generally relate to a layer stack including a high K dielectric layer formed over a first dielectric layer and a metal electrode. The high K dielectric layer has a K value of 20 or higher and may be formed as a part of a capacitor, a gate insulating layer, or any suitable insulating layer in electronic devices, such as display devices. The layer stack includes a second dielectric layer disposed on the first dielectric layer and the metal layer, and the high K dielectric layer disposed on the second dielectric layer. The second dielectric layer provides a homogenous surface on which the high K dielectric layer is formed. The homogeneous surface enables the high K dielectric material to be deposited uniformly thereover, resulting in a uniform thickness profile.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: June 29, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Xiangxin Rui, Soo Young Choi, Shinichi Kurita, Yujia Zhai, Lai Zhao
  • Patent number: 10927461
    Abstract: Embodiments of the present disclosure generally provide apparatus and methods for gas diffuser support structure for a vacuum chamber. The gas diffuser support structure comprises a backing plate having a central bore formed therethrough, an integrated cross structure formed in the central bore, and a gas deflector coupled to the cross structure by a single fastener.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: February 23, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Allen K. Lau, Robin L. Tiner, Lai Zhao, Soo Young Choi
  • Patent number: 10923327
    Abstract: Embodiments described herein generally relate to apparatus and methods for processing a substrate utilizing a high radio frequency (RF) power. The high RF power enables deposition of films on the substrate with more desirable properties. A first plurality of insulating members is disposed on a plurality of brackets and extends laterally inward from a chamber body. A second plurality of insulating members is disposed on the chamber body and extends from the first plurality of insulating members to a support surface of the chamber body. The insulating members reduce the occurrence of arcing between the plasma and the chamber body.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: February 16, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jianheng Li, Lai Zhao, Robin L. Tiner, Allen K. Lau, Gaku Furuta, Soo Young Choi
  • Patent number: 10883174
    Abstract: Embodiments of the present disclosure generally provide apparatus and methods for a gas diffuser assembly for a vacuum chamber, the gas diffuser assembly comprising a mounting plate, the mounting plate comprising a hub, a plurality of curved spokes extending from the hub in a radial direction, a gusset portion coupled between the hub and each of the curved spokes, each of the gusset portions having a convex curve disposed in an axial direction, and one or more mounting holes coupled to the curved spokes.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: January 5, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Allen K. Lau, Hsiang An, Lai Zhao, Jianhua Zhou, Robin L. Tiner
  • Publication number: 20200395485
    Abstract: Embodiments described herein provide thin film transistors (TFTs) and processes to reduce plasma induced damage in TFTs. In one embodiment, a buffer layer is disposed over a substrate and a semiconductor layer is disposed over the buffer layer. A gate dielectric layer is disposed over the semiconductor layer. The gate dielectric layer contacts the semiconductor layer at an interface. The gate electrode is disposed over the gate dielectric layer. The gate dielectric layer has a Dit of about 5e10 cm?2 eV?1 to about 5e11 cm?2 eV?1 and a hysteresis of about 0.10 V to about 0.30 V improve performance capability of the TFT while having a breakdown field between about 6 MV/cm and about 10 MV/cm.
    Type: Application
    Filed: August 28, 2020
    Publication date: December 17, 2020
    Inventors: Jianheng Li, Lai Zhao, Yujia Zhai, Soo Young Choi
  • Patent number: 10804408
    Abstract: Embodiments described herein provide thin film transistors (TFTs) and processes to reduce plasma induced damage in TFTs. In one embodiment, a buffer layer is disposed over a substrate and a semiconductor layer is disposed over the buffer layer. A gate dielectric layer is disposed over the semiconductor layer. The gate dielectric layer contacts the semiconductor layer at an interface. The gate electrode 204 is disposed over the gate dielectric layer. The gate dielectric layer has a Dit of about 5e10 cm?2eV?1 to about 5e11 cm?2eV?1 and a hysteresis of about 0.10 V to about 0.30 V improve performance capability of the TFT while having a breakdown field between about 6 MV/cm and about 10 MV/cm.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: October 13, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jianheng Li, Lai Zhao, Yujia Zhai, Soo Young Choi
  • Patent number: 10748759
    Abstract: The present disclosure relates to an improved large area substrate semiconductor device having a high density passivation layer, and method of fabrication thereof. More specifically, a high density SiN passivation layer is formed by plasma enhanced chemical vapor deposition of silane and nitrogen gases at low temperatures. Argon is added as a diluent gas in order to increase SiN passivation layer film density and overall film quality.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: August 18, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jianheng Li, Lai Zhao, Soo Young Choi
  • Publication number: 20200258918
    Abstract: Embodiments of the disclosure generally provide methods of forming a capacitor layer or a gate insulating layer with high dielectric constant as well as low film current leakage and desired film qualities for display applications. In one embodiment, a thin film transistor structure includes a dielectric layer formed on a substrate, wherein the dielectric layer is a zirconium containing material comprising aluminum, and gate, source and drain electrodes formed on the substrate, wherein the gate, source and drain electrodes formed above or below the dielectric layer.
    Type: Application
    Filed: July 11, 2017
    Publication date: August 13, 2020
    Inventors: Xiangxin RUI, Lai ZHAO, Jrjyan Jerry CHEN, Soo Young CHOI, Yujia ZHAI
  • Publication number: 20200227249
    Abstract: The present disclosure relates to an improved large area substrate semiconductor device having a high density passivation layer, and method of fabrication thereof. More specifically, a high density SiN passivation layer is formed by plasma enhanced chemical vapor deposition of silane and nitrogen gases at low temperatures. Argon is added as a diluent gas in order to increase SiN passivation layer film density and overall film quality.
    Type: Application
    Filed: January 15, 2019
    Publication date: July 16, 2020
    Inventors: Jianheng LI, Lai ZHAO, Soo Young CHOI