Patents by Inventor Lala Zhu
Lala Zhu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240087910Abstract: A semiconductor processing method may include providing a fluorine-containing precursor to a processing region of a semiconductor processing chamber. A substrate may be disposed within the processing region. The substrate may include an exposed region of silicon-and-oxygen-containing material. The substrate may include an exposed region of a liner material. The methods may include providing a hydrogen-containing precursor to the semiconductor processing region. The methods may include contacting the substrate with the fluorine-containing precursor and the hydrogen-containing precursor. The methods may include selectively removing at least a portion of the exposed silicon-and-oxygen-containing material.Type: ApplicationFiled: September 14, 2022Publication date: March 14, 2024Applicant: Applied Materials, Inc.Inventors: Lala Zhu, Shi Che, Dongqing Yang, Nitin K. Ingle
-
Patent number: 11915950Abstract: Exemplary support assemblies may include a top puck and a backing plate coupled with the top puck. The support assemblies may include a cooling plate coupled with the backing plate. The support assemblies may include a heater coupled between the cooling plate and the backing plate. The support assemblies may also include a back plate coupled with the backing plate about an exterior of the backing plate. The back plate may at least partially define a volume, and the heater and the cooling plate may be housed within the volume.Type: GrantFiled: January 25, 2022Date of Patent: February 27, 2024Assignee: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang, Dmitry Lubomirsky, Peter Hillman, Soonam Park, Martin Yue Choy, Lala Zhu
-
Patent number: 11361939Abstract: Exemplary semiconductor processing systems may include a processing chamber, and may include a remote plasma unit coupled with the processing chamber. Exemplary systems may also include an adapter coupled with the remote plasma unit. The adapter may include a first end and a second end opposite the first end. The adapter may define a central channel through the adapter. The adapter may define an exit from a second channel at the second end, and the adapter may define an exit from a third channel at the second end. The central channel, the second channel, and the third channel may each be fluidly isolated from one another within the adapter.Type: GrantFiled: June 21, 2019Date of Patent: June 14, 2022Assignee: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang, Dmitry Lubomirsky, Peter Hillman, Soonam Park, Martin Yue Choy, Lala Zhu
-
Publication number: 20220148894Abstract: Exemplary support assemblies may include a top puck and a backing plate coupled with the top puck. The support assemblies may include a cooling plate coupled with the backing plate. The support assemblies may include a heater coupled between the cooling plate and the backing plate. The support assemblies may also include a back plate coupled with the backing plate about an exterior of the backing plate. The back plate may at least partially define a volume, and the heater and the cooling plate may be housed within the volume.Type: ApplicationFiled: January 25, 2022Publication date: May 12, 2022Applicant: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang, Dmitry Lubomirsky, Peter Hillman, Soonam Park, Martin Yue Choy, Lala Zhu
-
Publication number: 20220084845Abstract: Exemplary semiconductor processing chambers may include showerhead. The chambers may include a pedestal configured to support a semiconductor substrate, where the showerhead and pedestal at least partially define a processing region within the semiconductor chamber. The chamber may include a spacer characterized by a first surface in contact with the showerhead and a second surface opposite the first surface. The chamber may include a pumping liner characterized by a first surface in contact with the spacer and a second surface opposite the first surface. The pumping liner may define a plurality of apertures within the first surface of the pumping liner.Type: ApplicationFiled: September 17, 2020Publication date: March 17, 2022Applicant: Applied Materials, Inc.Inventors: Samartha Subramanya, Dmitry Lubomirsky, Mehmet Tugrul Samir, Lala Zhu, Martin Y. Choy, Son T. Nguyen, Pranav Gopal
-
Patent number: 11276590Abstract: Exemplary support assemblies may include a top puck and a backing plate coupled with the top puck. The support assemblies may include a cooling plate coupled with the backing plate. The support assemblies may include a heater coupled between the cooling plate and the backing plate. The support assemblies may also include a back plate coupled with the backing plate about an exterior of the backing plate. The back plate may at least partially define a volume, and the heater and the cooling plate may be housed within the volume.Type: GrantFiled: May 17, 2017Date of Patent: March 15, 2022Assignee: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang, Dmitry Lubomirsky, Peter Hillman, Soonam Park, Martin Yue Choy, Lala Zhu
-
Patent number: 11276559Abstract: Exemplary semiconductor processing systems may include a processing chamber, and may include a remote plasma unit coupled with the processing chamber. Exemplary systems may also include an adapter coupled with the remote plasma unit. The adapter may include a first end and a second end opposite the first end. The adapter may define a central channel through the adapter. The adapter may define an exit from a second channel at the second end, and the adapter may define an exit from a third channel at the second end. The central channel, the second channel, and the third channel may each be fluidly isolated from one another within the adapter.Type: GrantFiled: May 17, 2017Date of Patent: March 15, 2022Assignee: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang, Dmitry Lubomirsky, Peter Hillman, Soonam Park, Martin Yue Choy, Lala Zhu
-
Patent number: 11101136Abstract: Embodiments of the present technology may include a method of etching. The method may include mixing plasma effluents with a gas in a first section of a chamber to form a first mixture. The method may also include flowing the first mixture to a substrate in a second section of the chamber. The first section and the second section may include nickel plated material. The method may further include reacting the first mixture with the substrate to etch a first layer selectively over a second layer. In addition, the method may include forming a second mixture including products from reacting the first mixture with the substrate.Type: GrantFiled: May 20, 2019Date of Patent: August 24, 2021Assignee: Applied Materials, Inc.Inventors: Dongqing Yang, Tien Fak Tan, Peter Hillman, Lala Zhu, Nitin K. Ingle, Dmitry Lubomirsky, Christopher Snedigar, Ming Xia
-
Publication number: 20210043448Abstract: Processing platforms having a central transfer station with a robot and an environment having greater than or equal to about 0.1% by weight water vapor, a pre-clean chamber connected to a side of the transfer station and a batch processing chamber connected to a side of the transfer station. The processing platform configured to pre-clean a substrate to remove native oxides from a first surface, form a blocking layer using a alkylsilane and selectively deposit a film. Methods of using the processing platforms and processing a plurality of wafers are also described.Type: ApplicationFiled: October 27, 2020Publication date: February 11, 2021Applicant: Applied Materials, Inc.Inventors: Ning Li, Mihaela A. Balseanu, Li-Qun Xia, Dongqing Yang, Lala Zhu, Malcolm J. Bevan, Theresa Kramer Guarini, Wenbo Yan
-
Publication number: 20190311883Abstract: Exemplary semiconductor processing systems may include a processing chamber, and may include a remote plasma unit coupled with the processing chamber. Exemplary systems may also include an adapter coupled with the remote plasma unit. The adapter may include a first end and a second end opposite the first end. The adapter may define a central channel through the adapter. The adapter may define an exit from a second channel at the second end, and the adapter may define an exit from a third channel at the second end. The central channel, the second channel, and the third channel may each be fluidly isolated from one another within the adapter.Type: ApplicationFiled: June 21, 2019Publication date: October 10, 2019Applicant: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang, Dmitry Lubomirsky, Peter Hillman, Soonam Park, Martin Yue Choy, Lala Zhu
-
Publication number: 20190272998Abstract: Embodiments of the present technology may include a method of etching. The method may include mixing plasma effluents with a gas in a first section of a chamber to form a first mixture. The method may also include flowing the first mixture to a substrate in a second section of the chamber. The first section and the second section may include nickel plated material. The method may further include reacting the first mixture with the substrate to etch a first layer selectively over a second layer. In addition, the method may include forming a second mixture including products from reacting the first mixture with the substrate.Type: ApplicationFiled: May 20, 2019Publication date: September 5, 2019Applicant: Applied Materials, Inc.Inventors: Dongqing Yang, Tien Fak Tan, Peter Hillman, Lala Zhu, Nitin K. Ingle, Dmitry Lubomirsky, Christopher Snedigar, Ming Xia
-
Patent number: 10297458Abstract: Embodiments of the present technology may include a method of etching. The method may include mixing plasma effluents with a gas in a first section of a chamber to form a first mixture. The method may also include flowing the first mixture to a substrate in a second section of the chamber. The first section and the second section may include nickel plated material. The method may further include reacting the first mixture with the substrate to etch a first layer selectively over a second layer. In addition, the method may include forming a second mixture including products from reacting the first mixture with the substrate.Type: GrantFiled: August 7, 2017Date of Patent: May 21, 2019Assignee: Applied Materials, Inc.Inventors: Dongqing Yang, Tien Fak Tan, Peter Hillman, Lala Zhu, Nitin K. Ingle, Dmitry Lubomirsky, Christopher Snedigar, Ming Xia
-
Publication number: 20190043726Abstract: Embodiments of the present technology may include a method of etching. The method may include mixing plasma effluents with a gas in a first section of a chamber to form a first mixture. The method may also include flowing the first mixture to a substrate in a second section of the chamber. The first section and the second section may include nickel plated material. The method may further include reacting the first mixture with the substrate to etch a first layer selectively over a second layer. In addition, the method may include forming a second mixture including products from reacting the first mixture with the substrate.Type: ApplicationFiled: August 7, 2017Publication date: February 7, 2019Applicant: Applied Materials, Inc.Inventors: Dongqing Yang, Tien Fak Tan, Peter Hillman, Lala Zhu, Nitin K. Ingle, Dmitry Lubomirsky, Christopher Snedigar, Ming Xia
-
Publication number: 20180337057Abstract: Exemplary semiconductor processing systems may include a processing chamber, and may include a remote plasma unit coupled with the processing chamber. Exemplary systems may also include an adapter coupled with the remote plasma unit. The adapter may include a first end and a second end opposite the first end. The adapter may define a central channel through the adapter. The adapter may define an exit from a second channel at the second end, and the adapter may define an exit from a third channel at the second end. The central channel, the second channel, and the third channel may each be fluidly isolated from one another within the adapter.Type: ApplicationFiled: May 17, 2017Publication date: November 22, 2018Applicant: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang, Dmitry Lubomirsky, Peter Hillman, Soonam Park, Martin Yue Choy, Lala Zhu
-
Publication number: 20180337074Abstract: Exemplary support assemblies may include a top puck and a backing plate coupled with the top puck. The support assemblies may include a cooling plate coupled with the backing plate. The support assemblies may include a heater coupled between the cooling plate and the backing plate. The support assemblies may also include a back plate coupled with the backing plate about an exterior of the backing plate. The back plate may at least partially define a volume, and the heater and the cooling plate may be housed within the volume.Type: ApplicationFiled: May 17, 2017Publication date: November 22, 2018Applicant: Applied Materials, Inc.Inventors: Mehmet Tugrul Samir, Dongqing Yang, Dmitry Lubomirsky, Peter Hillman, Soonam Park, Martin Yue Choy, Lala Zhu
-
Publication number: 20180211833Abstract: Processing platforms having a central transfer station with a robot and an environment having greater than or equal to about 0.1% by weight water vapor, a pre-clean chamber connected to a side of the transfer station and a batch processing chamber connected to a side of the transfer station. The processing platform configured to pre-clean a substrate to remove native oxides from a first surface, form a blocking layer using a alkylsilane and selectively deposit a film. Methods of using the processing platforms and processing a plurality of wafers are also described.Type: ApplicationFiled: January 24, 2018Publication date: July 26, 2018Inventors: Ning Li, Mihaela Balseanu, Li-Qun Xia, Dongqing Yang, Lala Zhu, Malcolm J. Bevan, Theresa Kramer Guarini, Wenbo Yan
-
Patent number: 9721789Abstract: Methods of selectively removing silicon oxide are described. Exposed portions of silicon oxide and spacer material may both be present on a patterned substrate. The silicon oxide may be a native oxide formed on silicon by exposure to atmosphere. The exposed portion of spacer material may have been etched back using reactive ion etching (RIE). A portion of the exposed spacer material may have residual damage from the reactive ion etching. A self-assembled monolayer (SAM) is selectively deposited over the damaged portion of spacer material but not on the exposed silicon oxide or undamaged portions of spacer material. A subsequent gas-phase etch may then be used to selectively remove silicon oxide but not the damaged portion of the spacer material because the SAM has been found to not only preferentially adsorb on the damaged spacer but also to halt the etch rate.Type: GrantFiled: October 24, 2016Date of Patent: August 1, 2017Assignee: Applied Materials, Inc.Inventors: Dongqing Yang, Lala Zhu, Fei Wang, Nitin K. Ingle