Process window widening using coated parts in plasma etch processes

- Applied Materials, Inc.

Embodiments of the present technology may include a method of etching. The method may include mixing plasma effluents with a gas in a first section of a chamber to form a first mixture. The method may also include flowing the first mixture to a substrate in a second section of the chamber. The first section and the second section may include nickel plated material. The method may further include reacting the first mixture with the substrate to etch a first layer selectively over a second layer. In addition, the method may include forming a second mixture including products from reacting the first mixture with the substrate.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History

Description

TECHNICAL FIELD

The present technology relates to semiconductor processes and equipment. More specifically, the present technology relates to improving process selectivity during low pressure etching operations.

BACKGROUND

Integrated circuits are made possible by processes which produce intricately patterned material layers on substrate surfaces. Producing patterned material on a substrate requires controlled methods for removal of exposed material. Chemical etching is used for a variety of purposes including transferring a pattern in photoresist into underlying layers, thinning layers, or thinning lateral dimensions of features already present on the surface. Often it is desirable to have an etch process that etches one material faster than another facilitating, for example, a pattern transfer process. Such an etch process is said to be selective to the first material. As a result of the diversity of materials, circuits, and processes, etch processes have been developed with a selectivity towards a variety of materials.

Dry etches produced in local plasmas formed within the substrate processing region can penetrate more constrained trenches and exhibit less deformation of delicate remaining structures than wet etches. However, even though an etch process may be selective to a first material over a second material, some undesired etching of the second material may still occur.

Thus, there is a need for improved systems and methods that can be used to produce high quality devices and structures. These and other needs are addressed by the present technology.

BRIEF SUMMARY

As semiconductor devices become smaller, patterning these devices may become more challenging. Smaller features may be harder to define. This may be a result of the decreased size or of more stringent tolerances needed for performance, reliability, and manufacturing throughput. The methods described below may provide an improved patterning process.

Flowing a mixture of plasma effluents and a gas by nickel plated materials may allow for etching at lower pressures. Lower pressure processing may be advantageous for smaller and deeper semiconductor features by facilitating etchants to travel to the bottom of a narrow and deep feature without contacting and etching a sidewall. Nickel plating may increase selectivity by maintaining a low etch amount of silicon at lower pressures. Without intending to be bound by theory, it is believed that nickel may scavenge fluorine radicals or hydrogen radicals, which may be responsible for undesired etching of silicon. Nickel may coat parts of the chamber that are downstream of significant mixing of gases and plasma etchants. Nickel and may coat all parts along the flow path of plasma effluents in the chamber downstream of mixing.

Embodiments of the present technology may include a semiconductor processing system. The system may include a remote plasma region. The system may also include a processing region fluidly coupled with the remote plasma region by a channel. The system may further include a gas inlet fluidly coupled to the channel. The gas inlet may define a flow path for a gas that does not pass through the remote plasma region before entering the processing region. The processing region may include a pedestal configured to support a substrate. The processing region may be at least partially defined by a sidewall and a showerhead. The sidewall and showerhead may be plated with nickel.

Embodiments of the present technology may include a method of etching. The method may include mixing plasma effluents with a gas in a first section of a chamber to form a first mixture. The method may also include flowing the first mixture to a substrate in a second section of the chamber. The first section and the second section may include nickel plated material. The method may further include reacting the first mixture with the substrate to etch a first layer selectively over a second layer. In addition, the method may include forming a second mixture including products from reacting the first mixture with the substrate.

Embodiments of the present technology may include a method of etching. The method may include flowing a first gas including ammonia and a fluorine-containing gas through a plasma to form plasma effluents. The method may also include flowing the plasma effluents through a first section of a chamber. The first section may not include nickel plated material. The method may further include mixing a second gas including ammonia with the plasma effluents in a second section of a chamber to form a first mixture. In addition, the method may include flowing the first mixture to a substrate in a third section of the chamber. The method may also include reacting the first mixture with the substrate to etch a silicon oxide layer selectively over a silicon layer. Then, the method may include forming a second mixture comprising products from reacting the first mixture with the substrate. The second mixture may be flowed through a fourth section of the chamber to exit the chamber. The second section, third section, and fourth section may include nickel plated material.

BRIEF DESCRIPTION OF THE DRAWINGS

A further understanding of the nature and advantages of the disclosed technology may be realized by reference to the remaining portions of the specification and the drawings.

FIG. 1 shows a semiconductor processing system according to embodiments of the present technology.

FIG. 2 shows a method of etching according to embodiments of the present technology.

FIG. 3 shows a method of etching according to embodiments of the present technology.

FIGS. 4A, 4B, and 4C show etch amounts using a nickel coated chamber and an anodized aluminum chamber according to embodiments of the present technology.

FIG. 5 shows a top plan view of one embodiment of an exemplary processing tool according to embodiments of the present invention.

FIGS. 6A and 6B show cross-sectional views of an exemplary processing chamber according to embodiments of the present invention.

FIG. 7 shows a schematic view of an exemplary showerhead configuration according to embodiments of the present invention.

FIG. 8 shows a schematic cross-sectional view of an exemplary processing system according to embodiments of the present technology.

FIG. 9 illustrates a schematic bottom partial plan view of an inlet adapter according to embodiments of the present technology.

DETAILED DESCRIPTION

Conventional systems and methods for etching silicon oxide may not be suited for low pressures. Low pressures may be preferable for smaller and deeper semiconductor features. However, at lower pressures, etch selectivity may decrease. For example, during the etch of thermal oxide at lower pressures, the etch amount of thermal oxide may decrease, while the etch amount of silicon may increase. At low pressures, the density of reactive components, such as radicals, decreases. As a result, the etch rate of thermal oxide may decrease. Unreacted or incompletely reacted species may also be present in the chamber. At lower pressures, these unreacted species (e.g., fluorine radicals or hydrogen radicals) may react with silicon in the substrate, increasing the etch rate of silicon. Conventional methods etching at increased chamber pressure in order to react the radicals with the substrate or other gaseous species.

Embodiments of the present technology may allow for low pressure etching of thermal oxide without substantially decreasing selectivity over etching of silicon. Chamber parts plated in nickel may reduce the amount of unreacted radicals. With fewer unreacted radicals, the radicals are more likely to etch thermal oxide and not be present to etch silicon.

I. SYSTEM OVERVIEW

As shown in FIG. 1, embodiments of the present technology may include a semiconductor processing system 100. System 100 may include a remote plasma region. The remote plasma region may include remote plasma source 102.

System 100 may also include a processing region fluidly coupled with the remote plasma region by a channel defined by isolator 104. Isolator 104 may be a ceramic material, such as alumina. Isolator 104 may not be plated with nickel. The processing region may include areas of the chamber from where the gases and plasma effluents mix to where the plasma effluents react with a substrate to the exit from the chamber. The processing region may include a region from, but not including isolator 104, to a port from the chamber to a pump.

System 100 may further include a gas inlet 106 fluidly coupled to isolator 104. The gas inlet may define a flow path for a gas that does not pass through the remote plasma region before entering the processing region. Plasma effluents from plasma source 102 may enter isolator 104 through inputs 108. Gas inlet 106 and inputs 108 may be disposed in a remote plasma source (RPS) adapter 110. RPS adapter 110 allows a remote plasma source to connect to the chamber. RPS adapter 110, gas inlet 106, and inputs 108 may not be plated with nickel.

Downstream of isolator 104 is a mixing manifold 112. Mixing manifold 112 may define a flow path that is not substantially straight. For example, mixing manifold may include a reduction (e.g., a taper) and/or expansion in the flow path size in order to mix the gas and the plasma effluents. Mixing manifold 112 may lead to gasbox 114. Gasbox heater 116 may be disposed on gasbox 114.

After gasbox 114, system 100 may be configured so that the plasma effluents and other gases pass through uniform blocker 118, uniform faceplate 120, and uniform selective modular device (SMD) 122. System 100 may include a reaction region, at least partially defined by uniform SMD 122 and spacer 124. The reaction region may be a portion of the processing region.

The processing region may include a pedestal 126 configured to support a substrate. The pedestal may be plated with nickel, but a nickel plated pedestal may not affect the selectivity of the etch as the substrate may cover the pedestal. The substrate may be a semiconductor wafer, including a silicon wafer. System 100 may include an annulus (i.e., edge ring 128) disposed on the circumference of pedestal 126. The annulus may be plated with nickel.

System 100 may include a pumping liner/channel 130. Pumping liner/channel 130 may include an outlet from the chamber to a pump. System 100 may also include lid plate insert 132.

The processing region may include regions defined from mixing manifold 112 to pumping liner/channel 130. The processing region may be at least partially defined by a sidewall (e.g., spacer 124 or any part that forms the chamber wall), and a showerhead (e.g., uniform SMD 122). The sidewall and showerhead may be plated with nickel. Some or all surfaces from the mixing of the gases in mixing manifold 112 to pumping liner/channel 130 may have surfaces plated with nickel, including for example, electroless nickel plating or nickel electroplating. Electroless nickel may include nickel with boron or nickel with phosphorous. Parts downstream of isolator 104 may have surfaces plated with nickel. In other words, mixing manifold 112, gasbox 114, uniform blocker 118, uniform faceplate 120, uniform SMD 122, spacer 124, edge ring 128, and pumping liner/channel 130 may be plated with nickel or another metal that scavenges excess radicals. A pressure plate, an inlet adapter, and a diffuser (not shown in FIG. 1, but shown in FIG. 8) may be between isolator 104 and mixing manifold 112 and may each be plated with nickel or another metal that scavenges excess radicals. Other metals may include platinum or palladium, but both may be too expensive. The parts plated with nickel may include a metal other than nickel before plating. For example, the parts may include stainless steel or aluminum.

FIG. 1 is a simplified diagram of a system. FIG. 8 shows a similar diagram of a system and is described below. One of skill would understand that any of the parts (e.g., metal parts) in FIG. 8 from the mixing of plasma effluents and gases downstream of isolator 104 (e.g., from pressure plate 4025) to exiting the chamber may be plated with nickel.

II. METHODS

Embodiments include methods of etching, which may use the system of etching described herein.

A. Example Method

As shown in FIG. 2, embodiments of the present technology may include a method 200 of etching. In block 202, method 200 may include mixing plasma effluents with a gas in a first section of a chamber to form a first mixture. The plasma effluents may include effluents from flowing ammonia and a fluorine-containing gas through a plasma. The fluorine-containing gas may include NF3 and/or HF. In some embodiments, the plasma effluents may include effluents from flowing ammonia, NF3, argon, H2, helium, and HF through a plasma. The first section may include nickel plated material, including electroless nickel plated material. The first section may include a mixing manifold, similar to mixing manifold 112 in FIG. 1. In embodiments, the first section may include a tapered path (e.g., central aperture 4023 in FIG. 8). The tapered path may mix the gases more than a non-tapered path, which may allow for nickel-plated parts to scavenge radicals. The gas may include ammonia or hydrogen.

Before mixing the plasma effluents, the plasma effluents may be flowed through a section of the chamber that does not include nickel plated material. Parts of the chamber before the gas is introduced may not be plated with nickel. For example, in FIG. 1, RPS adapter 110 may not be plated with nickel. Plating the RPS adapter with nickel may decrease the amount of silicon oxide etched but increase the amount of polysilicon etched, contrary to the desired outcome. Parts of the chamber that are not metal (e.g., ceramic) or do not allow for sufficient mixing of plasma effluents and gas may also not be plated with nickel. For example, in FIG. 1, isolator 104 is ceramic and cannot be easily plated with nickel. In addition, isolator 104 does not provide the geometry for significant mixing or the plasma effluents and the gas.

In block 204, method 200 may also include flowing the first mixture to a substrate in a second section of the chamber. The second section of the chamber may be at a pressure of 10 Torr or lower, which may include 8 to 10 Torr, 6 to 8 Torr, 4 to 6 Torr, 2 to 4 Torr, 1 to 2 Torr, or lower than 1 Torr. The second section of the chamber may include the pedestal, where the substrate may be located during processing. The second section may include nickel plated material, including any nickel plated material described herein. The first mixture may flow in a path in the chamber from the first section to the second section. The path may be defined by nickel plated parts of the chamber. The path from significant mixing of the plasma effluent and the gas to the exit of the chamber may be defined by surfaces plated with nickel, uninterrupted by surfaces not plated with nickel.

In block 206, method 200 may further include reacting the first mixture with the substrate to etch a first layer selectively over a second layer. The first layer may be a thermal silicon oxide layer. The second layer may be a silicon layer, including a polysilicon layer. The second layer may be any layer that may be etched by fluorine radicals or hydrogen radicals. Reacting the first mixture with the substrate may include etching less than 1 Angstrom of the first layer and greater than 50 Angstroms of the second layer. In embodiments, the second layer may have an etch amount of greater than 50 Angstroms, greater than 100 Angstroms, 200 Angstroms, or 300 Angstroms, while the first layer has an etch amount of less than 1 Angstrom, including less than 0.5 Angstrom or about 0 Angstroms. The selectivity of etching oxide over silicon may be greater than 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000.

In block 208, method 200 may include forming a second mixture including products from reacting the first mixture with the substrate. Method 200 may also include flowing the second mixture through a section of the chamber to exit the chamber, where the surface of the chamber leading to exit the chamber include nickel plated material. For example, in FIG. 1, pumping liner/channel 130 may be nickel plated.

Method 200 may include adsorbing fluorine atoms or hydrogen atoms onto the nickel plated material. Removing the fluorine atoms or hydrogen atoms from reacting with the substrate may help maintain negligible etching of silicon while etching thermal oxide.

Method 200 may further include removing the substrate from the chamber and performing additional patterning operations on the substrate.

B. Example Method

As shown in FIG. 3, embodiments of the present technology may include a method 300 of etching. In block 302, method 300 may include flowing a first gas including ammonia and a fluorine-containing gas through a plasma to form plasma effluents. The first gas may be any gas described herein.

In block 304, method 300 may also include flowing the plasma effluents through a first section of a chamber. The first section may not include nickel plated material. The first section may include parts of the chamber that are not metal or do not have sufficient mixing of plasma effluents and gas. The first section may be any section of the chamber not plated with nickel as described herein.

In block 306, method 300 may further include mixing a second gas including ammonia with the plasma effluents in a second section of a chamber to form a first mixture. The second gas may not pass through a plasma before mixing with the plasma effluents. The second section of the chamber may be where the gases undergo sufficient mixing. For example, in FIG. 1, the second section of the chamber may include mixing manifold 112. The second section of the chamber may include a tapered aperture and may include pressure plate 4025, inlet adapter 4030, diffuser 4035, and mixing manifold 4040 in FIG. 8.

In block 308, method 300 may include flowing the first mixture to a substrate in a third section of the chamber. The third section of the chamber may include the portion of the chamber where the substrate is etched. In FIG. 1, the third section of the chamber may be at least partially defined by uniform SMD 122 and spacer and may include pedestal 126.

In block 310, method 300 may also include reacting the first mixture with the substrate to etch a silicon oxide layer selectively over a silicon layer. The silicon oxide layer and silicon layer may be any such layer described herein and may be etched as selectively as described herein.

In block 312, method 300 may include forming a second mixture comprising products from reacting the first mixture with the substrate. The products may include etch byproducts from etching silicon oxide.

In block 314, the second mixture may be flowed through a fourth section of the chamber to exit the chamber. The fourth section of the chamber may be at least partially defined by a pump port, or for example, pumping liner/channel 130 in FIG. 1. Exiting the chamber may include entering a section of the system at a significantly different pressure than a section of the system configured to receive a substrate.

The second section, third section, and fourth section may include nickel plated material. The first mixture may flow in a path in the chamber from the second section to the fourth section. The path may be continuous and may be defined by nickel plated parts of the chamber. Any surface from the second section to the fourth section may be plated with nickel and may not include surfaces that are absent nickel plating. As described with FIG. 1, any and all parts from and including mixing manifold 112 to pumping liner/channel 130, with the optional exception of pedestal 126, may be plated with nickel. With FIG. 8, any and all parts from and including pressure plate 4025 to exiting the chamber may be plated with nickel.

III. EXAMPLES

Etch amounts were measured for a system without any nickel plated parts and a system with nickel plated parts. The system with nickel plated parts was a system similar to FIG. 1, with parts downstream of isolator 104 plated with nickel (including mixing manifold 112, gasbox 114, uniform blocker 118, uniform faceplate 120, uniform SMD 122, spacer 124, edge ring 128, and pumping liner/channel 130, as well as a pressure plate, an inlet adapter, and a diffuser not shown in FIG. 1). RPS adapter 110 and isolator 104 were not plated with nickel. The system without nickel plated parts had instead anodized aluminum coatings instead. A gas mixture of NH3, NF3, argon, H2, helium, and HF was flowed through a remote plasma source. The plasma effluents were then mixed with ammonia and flowed to etch a substrate. Etch amounts of thermal oxide and polysilicon were measured.

FIG. 4A, FIG. 4B, and FIG. 4C show the results of etching with a nickel coated chamber and an anodized aluminum chamber. In FIG. 4A, the x-axis is the chamber pressure. The y-axis on the left shows the thermal oxide etch amount in angstroms. A higher thermal oxide etch amount is desired for this process. The diamonds show the thermal oxide etch amounts for nickel coatings, and the triangles show the thermal oxide etch amounts for anodized aluminum coatings. For pressures from 7 Torr to 10 Torr, both systems show similar thermal oxide etch amounts.

The y-axis on the right shows the silicon etch amount in angstroms. The squares show the silicon etch amounts for nickel coatings, and the x's show the silicon etch amount for anodized aluminum coatings. At 10 Torr, both the nickel coating system and the anodized aluminum coating system show close to zero amount of silicon etched. However, as pressure decreases, the silicon etch amount for the anodized aluminum coating system increases. At 6 Torr, the anodized aluminum coating results in about 10 Angstroms of silicon etched. By contrast, even at the lowest tested pressure of 4 Torr, the nickel coated system shows close to no amount of silicon etched.

FIG. 4B shows the results from FIG. 4A but only for the nickel coated system. The graph shows thermal oxide etch amount on the left-hand y-axis, silicon etch amount on the right-hand y-axis, and chamber pressure on the x-axis. The thermal oxide etch amounts are plotted, and the thermal oxide etch amount decreases as pressure decreases. No etch amount of silicon was measured for any chamber pressure. As a result, the nickel coated system showed infinite selectivity for etching thermal oxide over silicon in this example.

FIG. 4C shows the results from FIG. 4A but only for the anodized aluminum system. The graph shows the thermal oxide etch amount on the left-hand y-axis, silicon etch amount on the right-hand y-axis, and chamber pressure on the x-axis. The thermal oxide etch amounts are plotted, and the thermal oxide etch amount decreases as pressure decreases. The etch amount of silicon increases as pressure decreases. At a pressure of 7 Torr, the silicon etch amount was about 10 Angstroms, while the thermal oxide etch amount was about 250 Angstroms. The selectivity at 7 Torr was slightly greater than 25. The results indicate that the silicon etch amount would continue to increase and the thermal oxide etch amount would continue to decrease as chamber pressure decreases. As a result, at pressures lower than 7 Torr, one would expect selectivities lower than 25.

IV. EXEMPLARY PROCESSING SYSTEM

Processing chambers that may implement embodiments of the present invention may be included within processing platforms such as the Producer® Selectra™ etch system, available from Applied Materials, Inc. of Santa Clara, Calif.

FIG. 5 shows a top plan view of one embodiment of a processing tool 1000 of deposition, etching, baking, and curing chambers according to disclosed embodiments. In the figure, a pair of front opening unified pods (FOUPs) 1002 supply substrates of a variety of sizes that are received by robotic arms 1004 and placed into a low pressure holding area 1006 before being placed into one of the substrate processing chambers 1008a-f, positioned in tandem sections 1009a-c. A second robotic arm 1010 may be used to transport the substrate wafers from the holding area 1006 to the substrate processing chambers 1008a-f and back. Each substrate processing chamber 1008a-f, can be outfitted to perform a number of substrate processing operations including the dry etch processes described herein in addition to cyclical layer deposition (CLD), atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), etch, pre-clean, degas, orientation, and other substrate processes.

The substrate processing chambers 1008a-f may include one or more system components for depositing, annealing, curing and/or etching a film on the substrate wafer. In one configuration, two pairs of the processing chamber, e.g., 1008c-d and 1008e-f, may be used to deposit material on the substrate, and the third pair of processing chambers, e.g., 1008a-b, may be used to etch the deposited film. In another configuration, all three pairs of chambers, e.g., 1008a-f, may be configured to etch a film on the substrate. Any one or more of the processes described may be carried out in chamber(s) separated from the fabrication system shown in different embodiments. Films may be dielectric, protective, or other material. It will be appreciated that additional configurations of deposition, etching, annealing, and curing chambers for films are contemplated by processing tool 1000.

FIG. 6A shows a cross-sectional view of an exemplary process chamber section 2000 with partitioned plasma generation regions within the processing chamber. During film etching, e.g., silicon, polysilicon, silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, carbon-containing material, etc., a process gas may be flowed into the first plasma region 2015 through a gas inlet assembly 2005. A remote plasma system (RPS) unit 2001 may be included in the system, and may process a gas which then may travel through gas inlet assembly 2005. The inlet assembly 2005 may include two or more distinct gas supply channels where the second channel (not shown) may bypass the RPS unit 2001. Accordingly, in disclosed embodiments the precursor gases may be delivered to the processing chamber in an unexcited state. In another example, the first channel provided through the RPS may be used for the process gas and the second channel bypassing the RPS may be used for a treatment gas in disclosed embodiments. The process gases may be excited within the RPS unit 2001 prior to entering the first plasma region 2015. Accordingly, a fluorine-containing precursor, for example, may pass through RPS 2001 or bypass the RPS unit in disclosed embodiments. Various other examples encompassed by this arrangement will be similarly understood.

A cooling plate 2003, faceplate 2017, ion suppressor 2023, showerhead 2025, and a pedestal 2065, having a substrate 2055 disposed thereon, are shown and may each be included according to disclosed embodiments. The pedestal 2065 may have a heat exchange channel through which a heat exchange fluid flows to control the temperature of the substrate. This configuration may allow the substrate 2055 temperature to be cooled or heated to maintain relatively low temperatures, such as between about −20° C. to about 200° C., or therebetween. The heat exchange fluid may comprise ethylene glycol and/or water. The wafer support platter of the pedestal 2065, which may comprise aluminum, ceramic, or a combination thereof, may also be resistively heated in order to achieve relatively high temperatures, such as from up to or about 100° C. to above or about 1100° C., using an embedded resistive heater element. The heating element may be formed within the pedestal as one or more loops, and an outer portion of the heater element may run adjacent to a perimeter of the support platter, while an inner portion runs on the path of a concentric circle having a smaller radius. The wiring to the heater element may pass through the stem of the pedestal 2065, which may be further configured to rotate.

The faceplate 2017 may be pyramidal, conical, or of another similar structure with a narrow top portion expanding to a wide bottom portion. The faceplate 2017 may additionally be flat as shown and include a plurality of through-channels used to distribute process gases. Plasma generating gases and/or plasma excited species, depending on use of the RPS 2001, may pass through a plurality of holes in faceplate 2017 for a more uniform delivery into the first plasma region 2015.

Exemplary configurations may include having the gas inlet assembly 2005 open into a gas supply region 2058 partitioned from the first plasma region 2015 by faceplate 2017 so that the gases/species flow through the holes in the faceplate 2017 into the first plasma region 2015. Structural and operational features may be selected to prevent significant backflow of plasma from the first plasma region 2015 back into the supply region 2058, gas inlet assembly 2005, and fluid supply system (not shown). The structural features may include the selection of dimensions and cross-sectional geometries of the apertures in faceplate 2017 to deactivate back-streaming plasma. The operational features may include maintaining a pressure difference between the gas supply region 2058 and first plasma region 2015 that maintains a unidirectional flow of plasma through the showerhead 2025. The faceplate 2017, or a conductive top portion of the chamber, and showerhead 2025 are shown with an insulating ring 2020 located between the features, which allows an AC potential to be applied to the faceplate 2017 relative to showerhead 2025 and/or ion suppressor 2023. The insulating ring 2020 may be positioned between the faceplate 2017 and the showerhead 2025 and/or ion suppressor 2023 enabling a capacitively coupled plasma (CCP) to be formed in the first plasma region. A baffle (not shown) may additionally be located in the first plasma region 2015, or otherwise coupled with gas inlet assembly 2005, to affect the flow of fluid into the region through gas inlet assembly 2005.

The ion suppressor 2023 may comprise a plate or other geometry that defines a plurality of apertures throughout the structure that are configured to suppress the migration of charged species (e.g., ions) out of the plasma excitation region 2015 while allowing uncharged neutral or radical species to pass through the ion suppressor 2023 into an activated gas delivery region between the suppressor and the showerhead. In disclosed embodiments, the ion suppressor 2023 may comprise a perforated plate with a variety of aperture configurations. These uncharged species may include highly reactive species that are transported with less reactive carrier gas through the apertures. As noted above, the migration of ionic species through the holes may be reduced, and in some instances completely suppressed. Controlling the amount of ionic species passing through the ion suppressor 2023 may provide increased control over the gas mixture brought into contact with the underlying wafer substrate, which in turn may increase control of the deposition and/or etch characteristics of the gas mixture. For example, adjustments in the ion concentration of the gas mixture can significantly alter its etch selectivity. In alternative embodiments in which deposition is performed, it can also shift the balance of conformal-to-flowable style depositions for dielectric materials, carbon-containing materials, and other materials.

The plurality of holes in the ion suppressor 2023 may be configured to control the passage of the activated gas, i.e., the ionic, radical, and/or neutral species, through the ion suppressor 2023. For example, the aspect ratio of the holes, or the hole diameter to length, and/or the geometry of the holes may be controlled so that the flow of ionically-charged species in the activated gas passing through the ion suppressor 2023 is reduced. The holes in the ion suppressor 2023 may include a tapered portion that faces the plasma excitation region 2015, and a cylindrical portion that faces the showerhead 2025. The cylindrical portion may be shaped and dimensioned to control the flow of ionic species passing to the showerhead 2025. An adjustable electrical bias may also be applied to the ion suppressor 2023 as an additional means to control the flow of ionic species through the suppressor.

The ion suppression element 2023 may function to reduce or eliminate the amount of ionically-charged species traveling from the plasma generation region to the substrate. Uncharged neutral and radical species may still pass through the openings in the ion suppressor to react with the substrate. It should be noted that the complete elimination of ionically-charged species in the reaction region surrounding the substrate is not always the desired goal. In many instances, ionic species are required to reach the substrate in order to perform the etch and/or deposition process. In these instances, the ion suppressor may help to control the concentration of ionic species in the reaction region at a level that assists the process.

Showerhead 2025 in combination with ion suppressor 2023 may allow a plasma present in chamber plasma region 2015 to avoid directly exciting gases in substrate processing region 2033, while still allowing excited species to travel from chamber plasma region 2015 into substrate processing region 2033. In this way, the chamber may be configured to prevent the plasma from contacting a substrate 2055 being etched. This may advantageously protect a variety of intricate structures and films patterned on the substrate, which may be damaged, dislocated, or otherwise warped if directly contacted by a generated plasma. Additionally, when plasma is allowed to contact the underlying material exposed by trenches, such as the etch stop, the rate at which the underlying material etches may increase.

The processing system may further include a power supply 2040 electrically coupled with the processing chamber to provide electric power to the faceplate 2017, ion suppressor 2023, showerhead 2025, and/or pedestal 2065 to generate a plasma in the first plasma region 2015 or processing region 2033. The power supply may be configured to deliver an adjustable amount of power to the chamber depending on the process performed. Such a configuration may allow for a tunable plasma to be used in the processes being performed. Unlike a remote plasma unit, which is often presented with on or off functionality, a tunable plasma may be configured to deliver a specific amount of power to the plasma region 2015. This in turn may allow development of particular plasma characteristics such that precursors may be dissociated in specific ways to enhance the etching profiles produced by these precursors.

A plasma may be ignited either in chamber plasma region 2015 above showerhead 2025 or substrate processing region 2033 below showerhead 2025. A plasma may be present in chamber plasma region 2015 to produce radical-fluorine precursors from an inflow of a fluorine-containing precursor. An AC voltage typically in the radio frequency (RF) range may be applied between the conductive top portion of the processing chamber, such as faceplate 2017, and showerhead 2025 and/or ion suppressor 2023 to ignite a plasma in chamber plasma region 2015 during deposition. An RF power supply may generate a high RF frequency of 13.56 MHz but may also generate other frequencies alone or in combination with the 13.56 MHz frequency.

Plasma power can be of a variety of frequencies or a combination of multiple frequencies. In the exemplary processing system the plasma may be provided by RF power delivered to faceplate 2017 relative to ion suppressor 2023 and/or showerhead 2025. The RF power may be between about 10 watts and about 2000 watts, between about 100 watts and about 2000 watts, between about 200 watts and about 1500 watts, or between about 200 watts and about 1000 watts in different embodiments. The RF frequency applied in the exemplary processing system may be low RF frequencies less than about 200 kHz, high RF frequencies between about 10 MHz and about 15 MHz, or microwave frequencies greater than or about 1 GHz in different embodiments. The plasma power may be capacitively-coupled (CCP) or inductively-coupled (ICP) into the remote plasma region.

The top plasma region 2015 may be left at low or no power when a bottom plasma in the substrate processing region 2033 is turned on to, for example, cure a film or clean the interior surfaces bordering substrate processing region 2033. A plasma in substrate processing region 2033 may be ignited by applying an AC voltage between showerhead 2025 and the pedestal 2065 or bottom of the chamber. A cleaning gas may be introduced into substrate processing region 2033 while the plasma is present.

A fluid, such as a precursor, for example a fluorine-containing precursor, may be flowed into the processing region 2033 by embodiments of the showerhead described herein. Excited species derived from the process gas in the plasma region 2015 may travel through apertures in the ion suppressor 2023, and/or showerhead 2025 and react with an additional precursor flowing into the processing region 2033 from a separate portion of the showerhead. Alternatively, if all precursor species are being excited in plasma region 2015, no additional precursors may be flowed through the separate portion of the showerhead. Little or no plasma may be present in the processing region 2033. Excited derivatives of the precursors may combine in the region above the substrate and, on occasion, on the substrate to etch structures or remove species on the substrate in disclosed applications.

Exciting the fluids in the first plasma region 2015 directly, or exciting the fluids in the RPS unit 2001, may provide several benefits. The concentration of the excited species derived from the fluids may be increased within the processing region 2033 due to the plasma in the first plasma region 2015. This increase may result from the location of the plasma in the first plasma region 2015. The processing region 2033 may be located closer to the first plasma region 2015 than the remote plasma system (RPS) 2001, leaving less time for the excited species to leave excited states through collisions with other gas molecules, walls of the chamber, and surfaces of the showerhead.

The uniformity of the concentration of the excited species derived from the process gas may also be increased within the processing region 2033. This may result from the shape of the first plasma region 2015, which may be more similar to the shape of the processing region 2033. Excited species created in the RPS unit 2001 may travel greater distances in order to pass through apertures near the edges of the showerhead 2025 relative to species that pass through apertures near the center of the showerhead 2025. The greater distance may result in a reduced excitation of the excited species and, for example, may result in a slower growth rate near the edge of a substrate. Exciting the fluids in the first plasma region 2015 may mitigate this variation for the fluid flowed through RPS 2001.

The processing gases may be excited in the RPS unit 2001 and may be passed through the showerhead 2025 to the processing region 2033 in the excited state. Alternatively, power may be applied to the first processing region to either excite a plasma gas or enhance an already excited process gas from the RPS. While a plasma may be generated in the processing region 2033, a plasma may alternatively not be generated in the processing region. In one example, the only excitation of the processing gas or precursors may be from exciting the processing gases in the RPS unit 2001 to react with the substrate 2055 in the processing region 2033.

In addition to the fluid precursors, there may be other gases introduced at varied times for varied purposes, including carrier gases to aid delivery. A treatment gas may be introduced to remove unwanted species from the chamber walls, the substrate, the deposited film and/or the film during deposition. A treatment gas may be excited in a plasma and then used to reduce or remove residual content inside the chamber. In other disclosed embodiments the treatment gas may be used without a plasma. When the treatment gas includes water vapor, the delivery may be achieved using a mass flow meter (MFM), mass flow controller (MFC), an injection valve, or by commercially available water vapor generators. The treatment gas may be introduced to the processing region 2033, either through the RPS unit or bypassing the RPS units, and may further be excited in the first plasma region.

FIG. 6B shows a detailed view of the features affecting the processing gas distribution through faceplate 2017. As shown in FIGS. 6A and 6B, faceplate 2017, cooling plate 2003, and gas inlet assembly 2005 intersect to define a gas supply region 2058 into which process gases may be delivered from gas inlet 2005. The gases may fill the gas supply region 2058 and flow to first plasma region 2015 through apertures 2059 in faceplate 2017. The apertures 2059 may be configured to direct flow in a substantially unidirectional manner such that process gases may flow into processing region 2033, but may be partially or fully prevented from backflow into the gas supply region 2058 after traversing the faceplate 2017.

The gas distribution assemblies such as showerhead 2025 for use in the processing chamber section 2000 may be referred to as dual channel showerheads (DCSH) and are additionally detailed in the embodiments described in FIG. 6A as well as FIG. 7 herein. The dual channel showerhead may provide for etching processes that allow for separation of etchants outside of the processing region 2033 to provide limited interaction with chamber components and each other prior to being delivered into the processing region.

The showerhead 2025 may comprise an upper plate 2014 and a lower plate 2016. The plates may be coupled with one another to define a volume 2018 between the plates. The coupling of the plates may be so as to provide first fluid channels 2019 through the upper and lower plates, and second fluid channels 2021 through the lower plate 2016. The formed channels may be configured to provide fluid access from the volume 2018 through the lower plate 2016 via second fluid channels 2021 alone, and the first fluid channels 2019 may be fluidly isolated from the volume 2018 between the plates and the second fluid channels 2021. The volume 2018 may be fluidly accessible through a side of the gas distribution assembly 2025. Although the exemplary system of FIG. 6A includes a dual-channel showerhead, it is understood that alternative distribution assemblies may be utilized that maintain first and second precursors fluidly isolated prior to the processing region 2033. For example, a perforated plate and tubes underneath the plate may be utilized, although other configurations may operate with reduced efficiency or not provide as uniform processing as the dual-channel showerhead as described.

In the embodiment shown, showerhead 2025 may distribute via first fluid channels 2019 process gases which contain plasma effluents upon excitation by a plasma in chamber plasma region 2015 or from RPS unit 2001. In embodiments, the process gas introduced into the RPS unit 2001 and/or chamber plasma region 2015 may contain fluorine, e.g., CF4, NF3, or XeF2, oxygen, e.g. N2O, or hydrogen-containing precursors, e.g. H2 or NH3. One or both process gases may also include a carrier gas such as helium, argon, nitrogen (N2), etc. Plasma effluents may include ionized or neutral derivatives of the process gas and may also be referred to herein as a radical-fluorine precursor, referring to the atomic constituent of the process gas introduced. In an example, a fluorine-containing gas, such as NF3, may be excited in the RPS unit 2001 and passed through regions 2015 and 2033 without the additional generation of plasmas in those regions. Plasma effluents from the RPS unit 2001 may pass through the showerhead 2025 and then react with the substrate 2055. After passing through the showerhead 2025, plasma effluents may include radical species and may be essentially devoid of ionic species or UV light. These plasma effluents may react with films on the substrate 2055, e.g., titanium nitride and other masking material.

The gas distribution assemblies 2025 for use in the processing chamber section 2000 are referred to as dual channel showerheads (DCSH) and are detailed in the embodiments described in FIG. 7 herein. The dual channel showerhead may allow for flowable deposition of a material, and separation of precursor and processing fluids during operation. The showerhead may alternatively be utilized for etching processes that allow for separation of etchants outside of the reaction zone to provide limited interaction with chamber components and each other prior to being delivered into the processing region.

FIG. 7 is a bottom view of a showerhead 3025 for use with a processing chamber according to disclosed embodiments. Showerhead 3025 may correspond with the showerhead shown in FIG. 6A. Through-holes 3065, which show a view of first fluid channels 2019, may have a plurality of shapes and configurations in order to control and affect the flow of precursors through the showerhead 3025. Small holes 3075, which show a view of second fluid channels 2021, may be distributed substantially evenly over the surface of the showerhead, even among the through-holes 3065, which may help to provide more even mixing of the precursors as they exit the showerhead than other configurations.

FIG. 8 shows a schematic cross-sectional view of an exemplary processing system 4000 according to embodiments of the present technology. System 4000 may be a variation of system 100 in FIG. 1. System 4000 may also include variations on the chamber illustrated in FIG. 6A, and may include some or all of the components illustrated in that figure. System 4000 may include a processing chamber 4005 and a remote plasma unit 4010. The remote plasma unit 4010 may be coupled with processing chamber 4005 with one or more components. The remote plasma unit 4010 may be coupled with one or more of a remote plasma unit adapter 4015, an isolator 4020, a pressure plate 4025, and inlet adapter 4030, a diffuser 4035, or a mixing manifold 4040. Mixing manifold 4040 may be coupled with a top of processing chamber 4005, and may be coupled with an inlet to processing chamber 4005.

Remote plasma unit adapter 4015 may be coupled with remote plasma unit 4010 at a first end 4011, and may be coupled with isolator 4020 at a second end 4012 opposite first end 4011. Through remote plasma unit adapter 4015 may define one or more channels. At first end 4011 may be defined an opening or port to a channel 4013. Channel 4013 may be centrally defined within remote plasma unit adapter 4015, and may be characterized by a first cross-sectional surface area in a direction normal to a central axis through remote plasma unit adapter 4015, which may be in the direction of flow from the remote plasma unit 4010. A diameter of channel 4013 may be equal to or in common with an exit port from remote plasma unit 4010. Channel 4013 may be characterized by a length from the first end 4011 to the second end 4012. Channel 4013 may extend through the entire length of remote plasma unit adapter 4015, or a length less than the length from first end 4011 to second end 4012. For example, channel 4013 may extend less than halfway of the length from the first end 4011 to the second end 4012, channel 4013 may extend halfway of the length from the first end 4011 to the second end 4012, channel 4013 may extend more than halfway of the length from the first end 4011 to the second end 4012, or channel 4013 may extend about halfway of the length from the first end 4011 to the second end 4012 of remote plasma unit adapter 4015.

Remote plasma unit adapter 4015 may also define one or more trenches 4014 defined beneath remote plasma unit adapter 4015. Trenches 4014 may be or include one or more annular recesses defined within remote plasma unit adapter 4015 to allow seating of an o-ring or elastomeric element, which may allow coupling with an isolator 4020.

Isolator 4020 may be coupled with second end 4012 of remote plasma unit adapter 4015 in embodiments. Isolator 4020 may be or include an annular member about an isolator channel 4021. Isolator channel 4021 may be axially aligned with a central axis in the direction of flow through remote plasma unit adapter 4015. Isolator channel 4021 may be characterized by a second cross-sectional area in a direction normal to a direction of flow through isolator 4020. The second cross-sectional area may be equal to, greater than, or less than the first cross-sectional area of channel 4013. In embodiments, isolator channel 4021 may be characterized by a diameter greater than, equal to, or about the same as a diameter of channel 4013 through remote plasma unit adapter 4015.

Isolator 4020 may be made of a similar or different material from remote plasma unit adapter 4015, mixing manifold 4040, or any other chamber component. In some embodiments, while remote plasma unit adapter 4015 and mixing manifold 4040 may be made of or include aluminum, including oxides of aluminum, treated aluminum on one or more surfaces, or some other material, isolator 4020 may be or include a material that is less thermally conductive than other chamber components. In some embodiments, isolator 4020 may be or include a ceramic, plastic, or other thermally insulating component configured to provide a thermal break between the remote plasma unit 4010 and the chamber 4005. During operation, remote plasma unit 4010 may be cooled or operate at a lower temperature relative to chamber 4005, while chamber 4005 may be heated or operate at a higher temperature relative to remote plasma unit 4010. Providing a ceramic or thermally insulating isolator 4020 may prevent or limit thermal, electrical, or other interference between the components.

Coupled with isolator 4020 may be a pressure plate 4025. Pressure plate 4025 may be or include aluminum or another material in embodiments, and pressure plate 4025 may be made of or include a similar or different material than remote plasma unit adapter 4015 or mixing manifold 4040 in embodiments. Pressure plate 4025 may define a central aperture 4023 through pressure plate 4025. Central aperture 4023 may be characterized by a tapered shape through pressure plate 4025 from a portion proximate isolator channel 4021 to the opposite side of pressure plate 4025. A portion of central aperture 4023 proximate isolator channel 4021 may be characterized by a cross-sectional area normal a direction of flow equal to or similar to a cross-sectional area of isolator channel 4021. Central aperture 4023 may be characterized by a percentage of taper of greater than or about 10% across a length of pressure plate 4025, and may be characterized by a percentage of taper greater than or about 20%, greater than or about 30%, greater than or about 40%, greater than or about 50%, greater than or about 60%, greater than or about 70%, greater than or about 80%, greater than or about 90%, greater than or about 100%, greater than or about 150%, greater than or about 200%, greater than or about 300%, or greater in embodiments. Pressure plate 4025 may also define one or more trenches 4024 defined beneath isolator 4020. Trenches 4024 may be or include one or more annular recesses defined within pressure plate 4025 to allow seating of an o-ring or elastomeric element, which may allow coupling with isolator 4020.

An inlet adapter 4030 may be coupled with pressure plate 4025 at a first end 4026, and coupled with diffuser 4035 at a second end 4027 opposite first end 4026. Inlet adapter 4030 may define a central channel 4028 defined through inlet adapter 4030. Central channel 4028 may be characterized by a first portion 4029a, and a second portion 4029b. First portion 4029a may extend from first end 4026 to a first length through inlet adapter 4030, wherein central channel 4028 may transition to second portion 4029b, which may extend to second end 4027. First portion 4029a may be characterized by a first cross-sectional area or diameter, and second portion 4029b may be characterized by a second cross-sectional area or diameter less than the first. In embodiments the cross-sectional area or diameter of first portion 4029a may be twice as large as the cross-sectional area or diameter of second portion 4029b, and may be up to or greater than about three times as large, greater than or about 4 times as large, greater than or about 5 times as large, greater than or about 6 times as large, greater than or about 7 times as large, greater than or about 8 times as large, greater than or about 9 times as large, greater than or about 10 times as large, or greater in embodiments. Central channel 4028 may be configured to provide plasma effluents of a precursor delivered from remote plasma unit 4010 in embodiments, which may pass through channel 4013 of remote plasma unit adapter 4015, isolator channel 4021 of isolator 4020, and central aperture 4023 of pressure plate 4025.

Inlet adapter 4030 may also define one or more second channels 4031, which may extend from below first portion 4029a to or through second end 4027. The second channels 4031 may be characterized by a second cross-sectional surface area in a direction normal to the central axis through inlet adapter 4030. The second cross-sectional surface area may be less than the cross-sectional surface area of first portion 4029a in embodiments, and may be greater than the cross-sectional surface area or a diameter of second portion 4029b. Second channels 4031 may extend to an exit from inlet adapter 4030 at second end 4027, and may provide egress from adapter 4030 for a precursor, such as a first bypass precursor, delivered alternately from the remote plasma unit 4010. For example, second channel 4031 may be fluidly accessible from a first port 4032 defined along an exterior surface, such as a side, of inlet adapter 4030, which may bypass remote plasma unit 4010. First port 4032 may be at or below first portion 4029a along a length of inlet adapter 4030, and may be configured to provide fluid access to the second channel 4031.

Second channel 4031 may deliver the precursor through the inlet adapter 4030 and out second end 4027. Second channel 4031 may be defined in a region of inlet adapter 4030 between first portion 4029a and second end 4027. In embodiments, second channel 4031 may not be accessible from central channel 4028. Second channel 4031 may be configured to maintain a precursor fluidly isolated from plasma effluents delivered into central channel 4028 from remote plasma unit 4010. The first bypass precursor may not contact plasma effluents until exiting inlet adapter 4030 through second end 4027. Second channel 4031 may include one or more channels defined in adapter 4030. Second channel 4031 may be centrally located within adapter 4030, and may be associated with central channels 4028. For example, second channel 4031 may be concentrically aligned and defined about central channel 4028 in embodiments. Second channel 4031 may be an annular or cylindrical channel extending partially through a length or vertical cross-section of inlet adapter 4030 in embodiments. In some embodiments, second channel 4031 may also be a plurality of channels extending radially about central channel 4028.

Inlet adapter 4030 may also define one or more third channels 4033, which may extend from below first portion 4029a to or through second end 4027, and may extend from below a plane bisecting first port 4032. The third channels 4033 may be characterized by a third cross-sectional surface area in a direction normal to the central axis through inlet adapter 4030. The third cross-sectional surface area may be less than the cross-sectional surface area of first portion 4029a in embodiments, and may be greater than the cross-sectional surface area or a diameter of second portion 4029b. The third cross-sectional surface area may also be equal to or similar to the cross-sectional surface area or a diameter of first portion 4029a as illustrated. For example, an outer diameter of third channel 4033 may be equivalent to an outer diameter of first portion 4029a, or may be less than an outer diameter of first portion 4029a. Third channels 4033 may extend to an exit from inlet adapter 4030 at second end 4027, and may provide egress from adapter 4030 for a precursor, such as a second bypass precursor, delivered alternately from the remote plasma unit 4010. For example, third channel 4033 may be fluidly accessible from a second port 4034 defined along an exterior surface, such as a side, of inlet adapter 4030, which may bypass remote plasma unit 4010. Second port 4034 may be located on an opposite side or portion of inlet adapter 4030 as first port 4032. Second port 4034 may be at or below first portion 4029a along a length of inlet adapter 4030, and may be configured to provide fluid access to the third channel 4033. Second port 4034 may also be at or below first port 4032 along a length of inlet adapter 4030 in embodiments.

Third channel 4033 may deliver the second bypass precursor through the inlet adapter 4030 and out second end 4027. Third channel 4033 may be defined in a region of inlet adapter 4030 between first portion 4029a and second end 4027. In embodiments, third channel 4033 may not be accessible from central channel 4028. Third channel 4033 may be configured to maintain a second bypass precursor fluidly isolated from plasma effluents delivered into central channel 4028 from remote plasma unit 4010, and from a first bypass precursor delivered into second channel 4031 through first port 4032. The second bypass precursor may not contact plasma effluents or a first bypass precursor until exiting inlet adapter 4030 through second end 4027. Third channel 4033 may include one or more channels defined in adapter 4030. Third channel 4033 may be centrally located within adapter 4030, and may be associated with central channels 4028 and second channel 4031. For example, third channel 4033 may be concentrically aligned and defined about central channel 4028 in embodiments, and may be concentrically aligned and defined about second channel 4031. Third channel 4033 may be a second annular or cylindrical channel extending partially through a length or vertical cross-section of inlet adapter 4030 in embodiments. In some embodiments, third channel 4033 may also be a plurality of channels extending radially about central channel 4028.

Diffuser 4035 may be positioned between inlet adapter 4030 and mixing manifold 4040 to maintain precursors delivered through inlet adapter 4030 fluidly isolated until accessing mixing manifold 4040. Diffuser 4035 may be characterized by one or more channels, such as cylindrical or annular channels defined through diffuser 4035. In embodiments, diffuser 4035 may define a first channel 4036 or central channel, a second channel 4037, and a third channel 4038. The channels may be characterized by similar dimensions or diameters as second portion 4029b of central channel 4028, second channel 4031, and third channel 4033 of inlet adapter 4030. For example, each channel may extend the inlet adapter channels to mixing manifold 4040. Second channel 4037 and third channel 4038 may each be annular channels defined about first channel 4036, and first channel 4036, second channel 4037, and third channel 4038 may be concentrically aligned in embodiments and defined through diffuser 4035.

Diffuser 4035 may additionally define one or more trenches 4039 about diffuser 4035. For example, diffuser 4035 may define a first trench 4039a, a second trench 4039b, and a third trench 4039c in embodiments, which may allow seating of o-rings or elastomeric members between inlet adapter 4030 and diffuser 4035. Each of trenches 4039 may be an annular trench in embodiments that sits radially exterior to one or more of the channels defined through diffuser 4035. First trench 4039a may be located radially outward of first channel 4036, and may be located between first channel 4036 and second channel 4037. Second trench 4039b may be located radially outward of second channel 4037, and may be located between second channel 4037 and third channel 4038. Third trench 4039c may be located radially outward of third channel 4038. A diameter of each trench 4039 may be greater than the channel to which it may be associated and to which it may be located radially exterior. The trenches may enable improved sealing between the inlet adapter 4030 and the diffuser 4035 to ensure precursors are maintained fluidly isolated between the components, and leaking between the channels does not occur.

Mixing manifold 4040 may be coupled with diffuser 4035 at a first end 4041, and may be coupled with chamber 4005 at a second end 4042. Mixing manifold 4040 may define an inlet 4043 at first end 4041. Inlet 4043 may provide fluid access from diffuser 4035, and inlet 4043 may be characterized by a diameter equal to or about the same as a diameter of third channel 4038 through diffuser 4035. Inlet 4043 may define a portion of a channel 4044 through mixing manifold 4040, and the channel 4044 may be composed of one or more sections defining a profile of channel 4044. Inlet 4043 may be a first section in the direction of flow through channel 4044 of mixing manifold 4040. Inlet 4043 may be characterized by a length that may be less than half a length in the direction of flow of mixing manifold 4040. The length of inlet 4043 may also be less than a third of the length of mixing manifold 4040, and may be less than one quarter the length of mixing manifold 4040 in embodiments. Inlet 4043 may receive each precursor from diffuser 4035, and may allow for mixing of the precursors, which may have been maintained fluidly isolated until delivery to mixing manifold 4040.

Inlet 4043 may extend to a second section of channel 4044, which may be or include a tapered section 4045. Tapered section 4045 may extend from a first diameter equal to or similar to a diameter of inlet 4043 to a second diameter less than the first diameter. In some embodiments, the second diameter may be about or less than half the first diameter. Tapered section 4045 may be characterized by a percentage of taper of greater than or about 10%, greater than or about 20%, greater than or about 30%, greater than or about 40%, greater than or about 50%, greater than or about 60%, greater than or about 70%, greater than or about 80%, greater than or about 90%, greater than or about 100%, greater than or about 150%, greater than or about 200%, greater than or about 300%, or greater in embodiments.

Tapered section 4045 may transition to a third region of channel 4044, which may be a flared section 4046. Flared section 4046 may extend from tapered section 4045 to an outlet of mixing manifold 4040 at second end 4042. Flared section 4046 may extend from a first diameter equal to the second diameter of tapered section 4045 to a second diameter greater than the first diameter. In some embodiments, the second diameter may be about or greater than double the first diameter. Flared section 4046 may be characterized by a percentage of flare of greater than or about 10%, greater than or about 20%, greater than or about 30%, greater than or about 40%, greater than or about 50%, greater than or about 60%, greater than or about 70%, greater than or about 80%, greater than or about 90%, greater than or about 100%, greater than or about 150%, greater than or about 200%, greater than or about 300%, or greater in embodiments.

Flared section 4046 may provide egress to precursors delivered through mixing manifold 4040 through second end 4042 via an outlet 4047. The sections of channel 4044 through mixing manifold 4040 may be configured to provide adequate or thorough mixing of precursors delivered to the mixing manifold, before providing the mixed precursors into chamber 44005. Unlike conventional technology, by performing the etchant or precursor mixing prior to delivery to a chamber, the present systems may provide an etchant having uniform properties prior to being distributed about a chamber and substrate. In this way, processes performed with the present technology may have more uniform results across a substrate surface.

Processing chamber 4005 may include a number of components in a stacked arrangement. The chamber stack may include a gasbox 4050, a blocker plate 4060, a faceplate 4070, an ion suppression element 4080, and a lid spacer 4090. The components may be utilized to distribute a precursor or set of precursors through the chamber to provide a uniform delivery of etchants or other precursors to a substrate for processing. In embodiments, these components may be stacked plates each at least partially defining an exterior of chamber 4005.

Gasbox 4050 may define a chamber inlet 4052. A central channel 4054 may be defined through gasbox 4050 to deliver precursors into chamber 4005. Inlet 4052 may be aligned with outlet 4047 of mixing manifold 4040. Inlet 4052 and/or central channel 4054 may be characterized by a similar diameter in embodiments. Central channel 4054 may extend through gasbox 4050 and be configured to deliver one or more precursors into a volume 4057 defined from above by gasbox 4050. Gasbox 4050 may include a first surface 4053, such as a top surface, and a second surface 4055 opposite the first surface 4053, such as a bottom surface of gasbox 4050. Top surface 4053 may be a planar or substantially planar surface in embodiments. Coupled with top surface 4053 may be a heater 4048.

Heater 4048 may be configured to heat chamber 4005 in embodiments, and may conductively heat each lid stack component. Heater 4048 may be any kind of heater including a fluid heater, electrical heater, microwave heater, or other device configured to deliver heat conductively to chamber 4005. In some embodiments, heater 4048 may be or include an electrical heater formed in an annular pattern about first surface 4053 of gasbox 4050. The heater may be defined across the gasbox 4050, and around mixing manifold 4040. The heater may be a plate heater or resistive element heater that may be configured to provide up to, about, or greater than about 2,000 W of heat, and may be configured to provide greater than or about 2,500 W, greater than or about 3,000 W, greater than or about 3,500 W, greater than or about 4,000 W, greater than or about 4,500 W, greater than or about 5,000 W, or more.

Heater 4048 may be configured to produce a variable chamber component temperature up to, about, or greater than about 50° C., and may be configured to produce a chamber component temperature greater than or about 75° C., greater than or about 100° C., greater than or about 150° C., greater than or about 200° C., greater than or about 250° C., greater than or about 300° C., or higher in embodiments. Heater 4048 may be configured to raise individual components, such as the ion suppression element 4080, to any of these temperatures to facilitate processing operations, such as an anneal. In some processing operations, a substrate may be raised toward the ion suppression element 4080 for an annealing operation, and heater 4048 may be adjusted to conductively raise the temperature of the heater to any particular temperature noted above, or within any range of temperatures within or between any of the stated temperatures.

Second surface 4055 of gasbox 4050 may be coupled with blocker plate 4060. Blocker plate 4060 may be characterized by a diameter equal to or similar to a diameter of gasbox 4050. Blocker plate 4060 may define a plurality of apertures 4063 through blocker plate 4060, only a sample of which are illustrated, which may allow distribution of precursors, such as etchants, from volume 4057, and may begin distributing precursors through chamber 4005 for a uniform delivery to a substrate. Although only a few apertures 4063 are illustrated, it is to be understood that blocker plate 4060 may have any number of apertures 4063 defined through the structure. Blocker plate 4060 may be characterized by a raised annular section 4065 at an external diameter of the blocker plate 4060, and a lowered annular section 4066 at an external diameter of the blocker plate 4060. Raised annular section 4065 may provide structural rigidity for the blocker plate 4060, and may define sides or an external diameter of volume 4057 in embodiments. Blocker plate 4060 may also define a bottom of volume 4057 from below. Volume 4057 may allow distribution of precursors from central channel 4054 of gasbox 4050 before passing through apertures 4063 of blocker plate 4060. Lowered annular section 4066 may also provide structural rigidity for the blocker plate 4060, and may define sides or an external diameter of a second volume 4058 in embodiments. Blocker plate 4060 may also define a top of volume 4058 from above, while a bottom of volume 4058 may be defined by faceplate 4070 from below.

Faceplate 4070 may include a first surface 4072 and a second surface 4074 opposite the first surface 4072. Faceplate 4070 may be coupled with blocker plate 4060 at first surface 4072, which may engage lowered annular section 4066 of blocker plate 4060. Faceplate 4070 may define a ledge 4073 at an interior of second surface 4074, extending to third volume 4075 at least partially defined within or by faceplate 4070. For example, faceplate 4070 may define sides or an external diameter of third volume 4075 as well as a top of volume 4075 from above, while ion suppression element 4080 may define third volume 4075 from below. Faceplate 4070 may define a plurality of channels through the faceplate, such as previously described with chamber 2000, although not illustrated in FIG. 8.

Ion suppression element 4080 may be positioned proximate the second surface 4074 of faceplate 4070, and may be coupled with faceplate 4070 at second surface 4074. Ion suppression element 4080 may be similar to ion suppressor 2023 described above, and may be configured to reduce ionic migration into a processing region of chamber 4005 housing a substrate. Ion suppression element 4080 may define a plurality of apertures through the structure as illustrated in FIG. 6A, although not illustrated in FIG. 8. In embodiments, gasbox 4050, blocker plate 4060, faceplate 4070, and ion suppression element 4080 may be coupled together, and in embodiments may be directly coupled together. By directly coupling the components, heat generated by heater 4048 may be conducted through the components to maintain a particular chamber temperature that may be maintained with less variation between components. Ion suppression element 4080 may also contact lid spacer 4090, which together may at least partially define a plasma processing region in which a substrate is maintained during processing.

Turning to FIG. 9 is illustrated a bottom partial plan view of an inlet adapter 5000 according to embodiments of the present technology. Inlet adapter 5000 may be similar to inlet adapter 4030 in embodiments. As illustrated, inlet adapter may include three channels concentrically aligned about a central axis of inlet adapter 5000. It is to be understood that in other embodiments the inlet adapter 5000 may include more or fewer channels than illustrated. Inlet adapter 5000 may include a central channel 5005 that may be fluidly accessible from a remote plasma unit as previously discussed. Central channel 5005 may extend fully through inlet adapter 5000. Second channel 5010 may extend about central channel 5005 and may provide fluid access for a first bypass precursor delivered additionally or alternatively with plasma effluents of a precursor through central channel 5005. Second channel 5010 may be accessed from first port 5012 defined along an exterior of inlet adapter 5000. Second channel 5010 may be concentrically aligned with central channel 5005, and may maintain a first bypass precursor fluidly isolated from plasma effluents or a different precursor flowing through central channel 5005.

Third channel 5015 may extend about central channel 5005 and second channel 5010, and may provide fluid access for a second bypass precursor delivered additionally or alternatively with plasma effluents of a precursor through central channel 5005 and a first bypass precursor through second channel 5010. Third channel 5015 may be accessed from a second port 5017 defined along an exterior of inlet adapter 5000, which may be located on a side of inlet adapter 5000 opposite first port 5012. Second port 5017 as well as third channel 5015 may be located below a horizontal plane through first port 5012. Third channel 5015 may be concentrically aligned with central channel 5005, and may maintain a second bypass precursor fluidly isolated from plasma effluents or a different precursor flowing through central channel 5005, and a first bypass precursor delivered through second channel 5010.

Both second channel 5010 and third channel 5015 may be annular channel defined at least partially through a length of inlet adapter 5000 in embodiments. The channels may also be a plurality of channels defined radially about central channel 5005. By providing three separate pathways for precursors, different volumes and/or flow rates of precursors may be utilized providing greater control over precursor delivery and etchant generation. Each precursor may be delivered with one or more carrier gases, and etchant developed may be finely tuned prior to delivery into a processing chamber fluidly coupled with inlet adapter 5000.

The above description of example embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form described, and many modifications and variations are possible in light of the teaching above.

In the preceding description, for the purposes of explanation, numerous details have been set forth in order to provide an understanding of various embodiments of the present technology. It will be apparent to one skilled in the art, however, that certain embodiments may be practiced without some of these details, or with additional details.

Having described several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the invention. Additionally, a number of well-known processes and elements have not been described in order to avoid unnecessarily obscuring the present invention. Additionally, details of any specific embodiment may not always be present in variations of that embodiment or may be added to other embodiments.

Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither, or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included.

As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a method” includes a plurality of such methods and reference to “the layer” includes reference to one or more layers and equivalents thereof known to those skilled in the art, and so forth. The invention has now been described in detail for the purposes of clarity and understanding. However, it will be appreciated that certain changes and modifications may be practice within the scope of the appended claims.

All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes. None is admitted to be prior art.

Claims

1. A method of etching, the method comprising:

mixing plasma effluents with a gas in a first section of a chamber to form a first mixture, wherein the first section comprises nickel plated material;
flowing the first mixture to a substrate in a second section of the chamber, wherein: the second section comprises nickel plated material, the first mixture flows in a path in the chamber from the first section to the second section, and the path is defined by nickel plated parts of the chamber;
reacting the first mixture with the substrate to etch a first layer selectively over a second layer;
forming a second mixture comprising products from reacting the first mixture with the substrate.

2. The method of claim 1, wherein the second section of the chamber is at a pressure of 10 Torr or lower.

3. The method of claim 1, wherein the plasma effluents comprise effluents from flowing ammonia, NF3, argon, H2, helium, and HF through a plasma.

4. The method of claim 1, further comprising:

flowing the plasma effluents through a third section of the chamber that does not comprise nickel plated material.

5. The method of claim 1, further comprising:

flowing a hydrogen-containing gas and a fluorine-containing gas through a plasma to form the plasma effluents, and
adsorbing fluorine atoms or hydrogen atoms onto the nickel plated material.

6. The method of claim 1, wherein the nickel plated material comprises electroless nickel plated material.

7. The method of claim 1, wherein the nickel plated material comprises nickel with boron or nickel with phosphorous.

8. The method of claim 1, wherein the plasma effluents comprise effluents from flowing ammonia and a fluorine-containing gas through a plasma.

9. The method of claim 8, wherein the fluorine-containing gas comprises NF3 or HF.

10. The method of claim 1, further comprising:

flowing the second mixture through a third section of the chamber to exit the chamber, wherein the third section of the chamber comprises nickel plated material.

11. The method of claim 10, wherein the third section is at least partially defined by a pump port.

12. The method of claim 1, further comprising:

flowing plasma effluents through a third section of the chamber that does not include nickel plated material before mixing the plasma effluents with the gas.

13. The method of claim 12, wherein the third section comprises a ceramic material.

14. The method of claim 1, wherein:

the first layer is a thermal silicon oxide layer,
the second layer is a silicon layer, and
reacting the first mixture with the substrate comprises etching less than 1 Angstrom of the first layer and greater than 50 Angstroms of the second layer.

15. The method of claim 14, wherein:

the products comprise etch byproducts from etching silicon oxide.

16. The method of claim 14, wherein the selectivity of etching the first layer over the second layer is greater than 100.

17. A method of etching, the method comprising:

flowing a first gas comprising ammonia and a fluorine-containing gas through a plasma to form plasma effluents;
flowing the plasma effluents through a first section of a chamber;
mixing a second gas comprising ammonia with the plasma effluents in a second section of the chamber to form a first mixture;
flowing the first mixture to a substrate in a third section of the chamber;
reacting the first mixture with the substrate to etch a silicon oxide layer selectively over a silicon layer;
forming a second mixture comprising products from reacting the first mixture with the substrate; and
flowing the second mixture through a fourth section of the chamber to exit the chamber, wherein: the first section of the chamber does not comprise nickel plated material, the second section, the third section, and the fourth section of the chamber comprise nickel plated material, the third section of the chamber is at a pressure of 10 Torr or lower, and reacting the first mixture with the substrate comprises etching less than 1 Angstrom of the silicon layer and greater than 50 Angstroms of the silicon oxide layer.

18. The method of claim 17, wherein:

the first mixture flows in a path in the chamber from the second section to the fourth section, and
the path is defined by nickel plated parts of the chamber.

19. The method of claim 17, wherein the nickel plated material comprises electroless nickel plated material.

20. A method of etching, the method comprising:

mixing plasma effluents with a gas in a first section of a chamber to form a first mixture, wherein: the first section comprises nickel plated material, and the plasma effluents comprise effluents from flowing ammonia, NF3, argon, H2, helium, and HF through a plasma;
flowing the first mixture to a substrate in a second section of the chamber, wherein the second section comprises nickel plated material;
reacting the first mixture with the substrate to etch a first layer selectively over a second layer;
forming a second mixture comprising products from reacting the first mixture with the substrate.

Referenced Cited

U.S. Patent Documents

2369620 February 1945 Sullivan et al.
3401302 September 1968 Thorpe
3451840 June 1969 Hough
3537474 November 1970 Rohrer
3756511 September 1973 Shinroku
3937857 February 10, 1976 Brummett et al.
3969077 July 13, 1976 Hill
4006047 February 1, 1977 Brummett et al.
4190488 February 26, 1980 Winters
4209357 June 24, 1980 Gorin et al.
4214946 July 29, 1980 Forget et al.
4232060 November 4, 1980 Mallory, Jr.
4234628 November 18, 1980 DuRose
4265943 May 5, 1981 Goldstein et al.
4340462 July 20, 1982 Koch
4341592 July 27, 1982 Shortes et al.
4361418 November 30, 1982 Tscheppe
4361441 November 30, 1982 Tylko
4364803 December 21, 1982 Nidola et al.
4368223 January 11, 1983 Kobayashi et al.
4374698 February 22, 1983 Sanders et al.
4397812 August 9, 1983 Mallory, Jr.
4468413 August 28, 1984 Bachmann
4565601 January 21, 1986 Kakehi et al.
4579618 April 1, 1986 Celestino et al.
4585920 April 29, 1986 Hoog et al.
4610775 September 9, 1986 Phifer
4625678 December 2, 1986 Shloya et al.
4632857 December 30, 1986 Mallory, Jr.
4656052 April 7, 1987 Satou et al.
4656076 April 7, 1987 Vetanen et al.
4668335 May 26, 1987 Mockler
4690746 September 1, 1987 McInerney et al.
4715937 December 29, 1987 Moslehi et al.
4749440 June 7, 1988 Blackwood et al.
4753898 June 28, 1988 Parrillo et al.
4786360 November 22, 1988 Cote et al.
4792378 December 20, 1988 Rose et al.
4793897 December 27, 1988 Dunfield et al.
4807016 February 21, 1989 Douglas
4810520 March 7, 1989 Wu
4816638 March 28, 1989 Ukai et al.
4820377 April 11, 1989 Davis et al.
4828649 May 9, 1989 Davis
4857140 August 15, 1989 Loewenstein
4867841 September 19, 1989 Loewenstein et al.
4904621 February 27, 1990 Lowenstein et al.
4913929 April 3, 1990 Moslehi et al.
4919750 April 24, 1990 Bausmith et al.
4946903 August 7, 1990 Gardella et al.
4951601 August 28, 1990 Maydan et al.
4960488 October 2, 1990 Law et al.
4980018 December 25, 1990 Mu et al.
4981551 January 1, 1991 Palmour
4985372 January 15, 1991 Narita et al.
4991542 February 12, 1991 Kohmura et al.
4992136 February 12, 1991 Tachi et al.
4993358 February 19, 1991 Mahawili
4994404 February 19, 1991 Sheng et al.
5000113 March 19, 1991 Wang et al.
5006192 April 9, 1991 Deguchi
5010842 April 30, 1991 Oda et al.
5013691 May 7, 1991 Lory et al.
5028565 July 2, 1991 Chang
5030319 July 9, 1991 Nishino et al.
5038713 August 13, 1991 Kawakami et al.
5045244 September 3, 1991 Marlett
5061838 October 29, 1991 Lane et al.
5069938 December 3, 1991 Lorimer et al.
5083030 January 21, 1992 Stavov
5089441 February 18, 1992 Moslehi
5089442 February 18, 1992 Olmer
5147692 September 15, 1992 Bengston
5156881 October 20, 1992 Okano et al.
5180435 January 19, 1993 Markunas et al.
5186718 February 16, 1993 Tepman et al.
5188706 February 23, 1993 Hori et al.
5198034 March 30, 1993 deBoer et al.
5200016 April 6, 1993 Namose
5203911 April 20, 1993 Sricharoenchalkit et al.
5215787 June 1, 1993 Homma
5221427 June 22, 1993 Koinuma et al.
5228501 July 20, 1993 Tepman et al.
5231690 July 27, 1993 Soma et al.
5235139 August 10, 1993 Bengston et al.
5238499 August 24, 1993 van de Ven et al.
5240497 August 31, 1993 Shacham et al.
5248371 September 28, 1993 Maher et al.
5248527 September 28, 1993 Uchida et al.
5252178 October 12, 1993 Moslehi
5266157 November 30, 1993 Kadomura
5269881 December 14, 1993 Sekiya
5270125 December 14, 1993 America et al.
5271972 December 21, 1993 Kwok et al.
5275977 January 4, 1994 Otsubo et al.
5277750 January 11, 1994 Wolgang
5279669 January 18, 1994 Lee
5279865 January 18, 1994 Chebi et al.
5288518 February 22, 1994 Homma
5290382 March 1, 1994 Zarowin et al.
5290383 March 1, 1994 Koshimizu
5292370 March 8, 1994 Tsai et al.
5292682 March 8, 1994 Stevens et al.
5300463 April 5, 1994 Cathey et al.
5302233 April 12, 1994 Kim et al.
5304250 April 19, 1994 Sameshima et al.
5306530 April 26, 1994 Strongin et al.
5314724 May 24, 1994 Tsukune et al.
5319247 June 7, 1994 Matsuura
5326427 July 5, 1994 Jerbic
5328558 July 12, 1994 Kawamura et al.
5328810 July 12, 1994 Lowrey et al.
5330578 July 19, 1994 Sakama
5334552 August 2, 1994 Homma
5345999 September 13, 1994 Hosokawa
5352636 October 4, 1994 Beinglass
5356478 October 18, 1994 Chen et al.
5362526 November 8, 1994 Wang et al.
5366585 November 22, 1994 Robertson et al.
5368897 November 29, 1994 Kurihara et al.
5378316 January 3, 1995 Franke et al.
5380560 January 10, 1995 Kaja et al.
5382311 January 17, 1995 Ishikawa et al.
5384284 January 24, 1995 Doan et al.
5385763 January 31, 1995 Okano et al.
5399237 March 21, 1995 Keswick et al.
5399529 March 21, 1995 Homma
5403434 April 4, 1995 Moslehi
5413670 May 9, 1995 Langan et al.
5413967 May 9, 1995 Matsuda et al.
5415890 May 16, 1995 Kloiber et al.
5416048 May 16, 1995 Blalock et al.
5420075 May 30, 1995 Homma et al.
5429995 July 4, 1995 Nishiyama et al.
5439553 August 8, 1995 Grant et al.
5451259 September 19, 1995 Krogh
5464499 November 7, 1995 Moslehi
5468342 November 21, 1995 Nulty et al.
5474589 December 12, 1995 Ohga et al.
5478403 December 26, 1995 Shinigawa et al.
5478462 December 26, 1995 Walsh
5483920 January 16, 1996 Pryor
5494494 February 27, 1996 Mizuno et al.
5500249 March 19, 1996 Telford et al.
5505816 April 9, 1996 Barnes et al.
5510216 April 23, 1996 Calabrese et al.
5516367 May 14, 1996 Lei et al.
5518962 May 21, 1996 Murao
5531835 July 2, 1996 Fodor et al.
5534070 July 9, 1996 Okamura et al.
5536360 July 16, 1996 Nguyen et al.
5549780 August 27, 1996 Koinuma et al.
5558717 September 24, 1996 Zhao et al.
5560779 October 1, 1996 Knowles et al.
5563105 October 8, 1996 Dobuzinsky et al.
5567243 October 22, 1996 Foster et al.
5571576 November 5, 1996 Qian et al.
5575853 November 19, 1996 Arami et al.
5578130 November 26, 1996 Hayashi et al.
5578161 November 26, 1996 Auda
5580421 December 3, 1996 Hiatt et al.
5591269 January 7, 1997 Arami et al.
5592358 January 7, 1997 Shamouilian
5597439 January 28, 1997 Salzman
5599740 February 4, 1997 Jang et al.
5614055 March 25, 1997 Fairbairn et al.
5616518 April 1, 1997 Foo et al.
5624582 April 29, 1997 Cain
5626922 May 6, 1997 Miyanaga et al.
5628829 May 13, 1997 Foster et al.
5635086 June 3, 1997 Warren, Jr.
5645645 July 8, 1997 Zhang et al.
5648125 July 15, 1997 Cane
5648175 July 15, 1997 Russell et al.
5656093 August 12, 1997 Burkhart et al.
5660957 August 26, 1997 Chou et al.
5661093 August 26, 1997 Ravi et al.
5670066 September 23, 1997 Barnes et al.
5674787 October 7, 1997 Zhao et al.
5676758 October 14, 1997 Hasgawa et al.
5679606 October 21, 1997 Wang et al.
5685946 November 11, 1997 Fathauer et al.
5688331 November 18, 1997 Aruga et al.
5695810 December 9, 1997 Dubin et al.
5712185 January 27, 1998 Tsai et al.
5716500 February 10, 1998 Bardos et al.
5716506 February 10, 1998 Maclay et al.
5719085 February 17, 1998 Moon et al.
5733816 March 31, 1998 Iyer et al.
5747373 May 5, 1998 Yu
5753886 May 19, 1998 Iwamura et al.
5755859 May 26, 1998 Brusic et al.
5756400 May 26, 1998 Ye et al.
5756402 May 26, 1998 Jimbo et al.
5772770 June 30, 1998 Suda et al.
5781693 July 14, 1998 Ballance et al.
5786276 July 28, 1998 Brooks et al.
5788825 August 4, 1998 Park et al.
5789300 August 4, 1998 Fulford
5792376 August 11, 1998 Kanai et al.
5800686 September 1, 1998 Littau et al.
5804259 September 8, 1998 Robles
5812403 September 22, 1998 Fong et al.
5814238 September 29, 1998 Ashby et al.
5814365 September 29, 1998 Mahawill
5820723 October 13, 1998 Benjamin et al.
5824599 October 20, 1998 Schacham-Diamand et al.
5830805 November 3, 1998 Schacham-Diamand et al.
5835334 November 10, 1998 McMillin et al.
5843538 December 1, 1998 Ehrsam et al.
5843847 December 1, 1998 Pu et al.
5844195 December 1, 1998 Fairbairn et al.
5846332 December 8, 1998 Zhao et al.
5846373 December 8, 1998 Pirkle et al.
5846375 December 8, 1998 Gilchrist et al.
5846598 December 8, 1998 Semkow et al.
5849639 December 15, 1998 Molloy et al.
5850105 December 15, 1998 Dawson et al.
5855681 January 5, 1999 Maydan et al.
5855685 January 5, 1999 Tobe et al.
5856240 January 5, 1999 Sinha et al.
5858876 January 12, 1999 Chew
5863376 January 26, 1999 Wicker
5865896 February 2, 1999 Nowak
5866483 February 2, 1999 Shiau et al.
5868897 February 9, 1999 Ohkawa
5872052 February 16, 1999 Iyer
5872058 February 16, 1999 Van Cleemput et al.
5882424 March 16, 1999 Taylor et al.
5882786 March 16, 1999 Nassau et al.
5883012 March 16, 1999 Chiou
5885404 March 23, 1999 Kim et al.
5885749 March 23, 1999 Huggins et al.
5888906 March 30, 1999 Sandhu et al.
5891349 April 6, 1999 Tobe et al.
5891513 April 6, 1999 Dubin et al.
5897751 April 27, 1999 Makowiecki
5899752 May 4, 1999 Hey et al.
5900163 May 4, 1999 Yi et al.
5904827 May 18, 1999 Reynolds
5907790 May 25, 1999 Kellam
5910340 June 8, 1999 Uchida et al.
5913147 June 15, 1999 Dubin et al.
5913978 June 22, 1999 Kato et al.
5915190 June 22, 1999 Pirkle
5918116 June 29, 1999 Chittipeddi
5919332 July 6, 1999 Koshiishi et al.
5920792 July 6, 1999 Lin
5926737 July 20, 1999 Ameen et al.
5932077 August 3, 1999 Reynolds
5933757 August 3, 1999 Yoshikawa et al.
5935334 August 10, 1999 Fong et al.
5935340 August 10, 1999 Xia et al.
5937323 August 10, 1999 Orczyk et al.
5939831 August 17, 1999 Fong et al.
5942075 August 24, 1999 Nagahata et al.
5944049 August 31, 1999 Beyer et al.
5944902 August 31, 1999 Redeker et al.
5948702 September 7, 1999 Rotondaro
5951601 September 14, 1999 Lesinski et al.
5951776 September 14, 1999 Selyutin et al.
5951896 September 14, 1999 Mahawill
5953591 September 14, 1999 Ishihara et al.
5953635 September 14, 1999 Andideh
5963840 October 5, 1999 Xia et al.
5968587 October 19, 1999 Frankel et al.
5968610 October 19, 1999 Liu et al.
5969422 October 19, 1999 Ting et al.
5976327 November 2, 1999 Tanaka
5990000 November 23, 1999 Hong et al.
5990013 November 23, 1999 Berenguer et al.
5993916 November 30, 1999 Zhao et al.
5994209 November 30, 1999 Yieh et al.
5997649 December 7, 1999 Hillman
5997962 December 7, 1999 Ogasawara et al.
6004884 December 21, 1999 Abraham
6007635 December 28, 1999 Mahawill
6007785 December 28, 1999 Liou
6010962 January 4, 2000 Liu et al.
6013191 January 11, 2000 Nasser-Faili et al.
6013584 January 11, 2000 M'Saad
6015724 January 18, 2000 Yamazaki et al.
6015747 January 18, 2000 Lopatin et al.
6017414 January 25, 2000 Koemtzopoulos et al.
6019848 February 1, 2000 Kiyama et al.
6020271 February 1, 2000 Yanagida
6030666 February 29, 2000 Lam et al.
6030881 February 29, 2000 Papasouliotis et al.
6035101 March 7, 2000 Sajoto et al.
6036878 March 14, 2000 Collins et al.
6037018 March 14, 2000 Jang et al.
6037266 March 14, 2000 Tao et al.
6039834 March 21, 2000 Tanaka et al.
6039851 March 21, 2000 Iyer
6053982 April 25, 2000 Halpin et al.
6059643 May 9, 2000 Hu et al.
6063683 May 16, 2000 Wu et al.
6063712 May 16, 2000 Gilton et al.
6065424 May 23, 2000 Shacham-Diamand et al.
6065425 May 23, 2000 Takaki et al.
6072147 June 6, 2000 Koshiishi
6072227 June 6, 2000 Yau et al.
6074512 June 13, 2000 Collins et al.
6074514 June 13, 2000 Bjorkman et al.
6077384 June 20, 2000 Collins et al.
6077780 June 20, 2000 Dubin
6079356 June 27, 2000 Umotoy et al.
6080529 June 27, 2000 Ye et al.
6081414 June 27, 2000 Flanigan et al.
6083344 July 4, 2000 Hanawa et al.
6083844 July 4, 2000 Bui-Le et al.
6086677 July 11, 2000 Umotoy et al.
6087278 July 11, 2000 Kim et al.
6090212 July 18, 2000 Mahawill
6093457 July 25, 2000 Okumura
6093594 July 25, 2000 Yeap et al.
6099697 August 8, 2000 Hausmann
6107199 August 22, 2000 Allen et al.
6110530 August 29, 2000 Chen et al.
6110832 August 29, 2000 Morgan et al.
6110836 August 29, 2000 Cohen et al.
6110838 August 29, 2000 Loewenstein
6113771 September 5, 2000 Landau et al.
6114216 September 5, 2000 Yieh et al.
6117245 September 12, 2000 Mandrekar et al.
6120640 September 19, 2000 Shih et al.
6136163 October 24, 2000 Cheung et al.
6136165 October 24, 2000 Moslehi et al.
6136685 October 24, 2000 Narwankar et al.
6136693 October 24, 2000 Chan et al.
6140234 October 31, 2000 Uzoh et al.
6144099 November 7, 2000 Lopatin et al.
6147009 November 14, 2000 Grill et al.
6148761 November 21, 2000 Majewski et al.
6149828 November 21, 2000 Vaartstra
6150628 November 21, 2000 Smith et al.
6153935 November 28, 2000 Edelstein et al.
6161500 December 19, 2000 Kopacz et al.
6161576 December 19, 2000 Maher et al.
6162302 December 19, 2000 Raghavan et al.
6162370 December 19, 2000 Hackett et al.
6165912 December 26, 2000 McConnell et al.
6167834 January 2, 2001 Wang et al.
6169021 January 2, 2001 Akram et al.
6170428 January 9, 2001 Redeker et al.
6171661 January 9, 2001 Zheng et al.
6174450 January 16, 2001 Patrick et al.
6174810 January 16, 2001 Patrick et al.
6174812 January 16, 2001 Hsuing et al.
6176198 January 23, 2001 Kao et al.
6176667 January 23, 2001 Fairbairn
6177245 January 23, 2001 Ward et al.
6179924 January 30, 2001 Zhao et al.
6180523 January 30, 2001 Lee et al.
6182602 February 6, 2001 Redeker et al.
6182603 February 6, 2001 Shang et al.
6184121 February 6, 2001 Buchwalter et al.
6186091 February 13, 2001 Chu et al.
6189483 February 20, 2001 Ishikawa et al.
6190233 February 20, 2001 Hong et al.
6194038 February 27, 2001 Rossman
6197181 March 6, 2001 Chen
6197364 March 6, 2001 Paunovic et al.
6197680 March 6, 2001 Lin et al.
6197688 March 6, 2001 Simpson
6197705 March 6, 2001 Vassiliev
6198616 March 6, 2001 Dahimene et al.
6203863 March 20, 2001 Liu et al.
6204200 March 20, 2001 Shieh et al.
6210486 April 3, 2001 Mizukami et al.
6217658 April 17, 2001 Orczyk et al.
6220201 April 24, 2001 Nowak
6225745 May 1, 2001 Srivastava
6228233 May 8, 2001 Lakshmikanthan et al.
6228751 May 8, 2001 Yamazaki et al.
6228758 May 8, 2001 Pellerin et al.
6235643 May 22, 2001 Mui et al.
6237527 May 29, 2001 Kellerman et al.
6238513 May 29, 2001 Arnold et al.
6238582 May 29, 2001 Williams et al.
6197151 March 6, 2001 Kaji et al.
6241845 June 5, 2001 Gadgil et al.
6242349 June 5, 2001 Nogami et al.
6244211 June 12, 2001 Nishikawa et al.
6245396 June 12, 2001 Nogami
6245670 June 12, 2001 Cheung et al.
6251236 June 26, 2001 Stevens
6251802 June 26, 2001 Moore et al.
6258170 July 10, 2001 Somekh et al.
6258220 July 10, 2001 Dordi et al.
6258223 July 10, 2001 Cheung et al.
6258270 July 10, 2001 Hilgendorff et al.
6261637 July 17, 2001 Oberle
6277733 August 21, 2001 Smith
6277752 August 21, 2001 Chen
6277763 August 21, 2001 Kugimiya et al.
6281072 August 28, 2001 Li et al.
6281135 August 28, 2001 Han et al.
6284146 September 4, 2001 Kim et al.
6291282 September 18, 2001 Wilk et al.
6291348 September 18, 2001 Lopatin et al.
6302964 October 16, 2001 Umotoy et al.
6303044 October 16, 2001 Koemtzopoulos
6303418 October 16, 2001 Cha et al.
6306772 October 23, 2001 Lin
6308654 October 30, 2001 Schneider et al.
6308776 October 30, 2001 Sloan
6310755 October 30, 2001 Busato et al.
6312554 November 6, 2001 Ye
6312995 November 6, 2001 Yu
6319387 November 20, 2001 Krishnamoorthy et al.
6321587 November 27, 2001 Laush
6322716 November 27, 2001 Qiao et al.
6323128 November 27, 2001 Sambucetti et al.
6335288 January 1, 2002 Kwan et al.
6340435 January 22, 2002 Bjorkman et al.
6342733 January 29, 2002 Hu et al.
RE37546 February 12, 2002 Mahawill
6344410 February 5, 2002 Lopatin et al.
6348407 February 19, 2002 Gupta et al.
6350320 February 26, 2002 Sherstinsky et al.
6350697 February 26, 2002 Richardson
6351013 February 26, 2002 Luning et al.
6352081 March 5, 2002 Lu et al.
6355573 March 12, 2002 Okumura
6364949 April 2, 2002 Or et al.
6364954 April 2, 2002 Umotoy et al.
6364957 April 2, 2002 Schneider et al.
6375748 April 23, 2002 Yudovsky et al.
6376386 April 23, 2002 Oshima
6379575 April 30, 2002 Yin et al.
6383896 May 7, 2002 Kirimura et al.
6383951 May 7, 2002 Li
6387207 May 14, 2002 Janakiraman et al.
6391753 May 21, 2002 Yu
6395150 May 28, 2002 Van Cleemput et al.
6403491 June 11, 2002 Liu et al.
6415736 July 9, 2002 Hao et al.
6416647 July 9, 2002 Dordi et al.
6418874 July 16, 2002 Cox et al.
6423284 July 23, 2002 Arno
6427623 August 6, 2002 Ko
6429465 August 6, 2002 Yagi et al.
6432819 August 13, 2002 Pavate et al.
6432831 August 13, 2002 Dhindsa et al.
6436193 August 20, 2002 Kasai et al.
6436816 August 20, 2002 Lee et al.
6440863 August 27, 2002 Tsai et al.
6441492 August 27, 2002 Cunningham
6446572 September 10, 2002 Brcka
6448537 September 10, 2002 Nering
6458718 October 1, 2002 Todd
6461974 October 8, 2002 Ni et al.
6462371 October 8, 2002 Weimer et al.
6462372 October 8, 2002 Xia et al.
6465051 October 15, 2002 Sahin et al.
6465350 October 15, 2002 Taylor et al.
6465366 October 15, 2002 Nemani et al.
6477980 November 12, 2002 White et al.
6479373 November 12, 2002 Dreybrodt et al.
6488984 December 3, 2002 Wada et al.
6494959 December 17, 2002 Samoilov et al.
6499425 December 31, 2002 Sandhu et al.
6500728 December 31, 2002 Wang
6503843 January 7, 2003 Xia et al.
6506291 January 14, 2003 Tsai et al.
6509283 January 21, 2003 Thomas
6509623 January 21, 2003 Zhao
6516815 February 11, 2003 Stevens et al.
6518548 February 11, 2003 Sugaya et al.
6527968 March 4, 2003 Wang et al.
6528409 March 4, 2003 Lopatin et al.
6528751 March 4, 2003 Hoffman et al.
6537707 March 25, 2003 Lee
6537733 March 25, 2003 Campana et al.
6541397 April 1, 2003 Bencher
6541671 April 1, 2003 Martinez et al.
6544340 April 8, 2003 Yudovsky
6547977 April 15, 2003 Yan et al.
6551924 April 22, 2003 Dalton et al.
6558564 May 6, 2003 Loewenhardt
6565661 May 20, 2003 Nguyen
6565729 May 20, 2003 Chen et al.
6569773 May 27, 2003 Gellrich et al.
6572937 June 3, 2003 Hakovirta et al.
6573030 June 3, 2003 Fairbairn et al.
6573606 June 3, 2003 Sambucetti et al.
6585851 July 1, 2003 Ohmi et al.
6586163 July 1, 2003 Okabe et al.
6596599 July 22, 2003 Guo
6596654 July 22, 2003 Bayman et al.
6602434 August 5, 2003 Hung et al.
6602806 August 5, 2003 Xia et al.
6603269 August 5, 2003 Vo et al.
6605874 August 12, 2003 Leu et al.
6616967 September 9, 2003 Test
6627532 September 30, 2003 Gaillard et al.
6635575 October 21, 2003 Xia et al.
6635578 October 21, 2003 Xu et al.
6638810 October 28, 2003 Bakli et al.
6645301 November 11, 2003 Sainty et al.
6645550 November 11, 2003 Cheung et al.
6656831 December 2, 2003 Lee et al.
6656837 December 2, 2003 Xu et al.
6656848 December 2, 2003 Scanlan et al.
6663715 December 16, 2003 Yuda et al.
6677242 January 13, 2004 Liu et al.
6679981 January 20, 2004 Pan et al.
6688375 February 10, 2004 Turner
6713356 March 30, 2004 Skotnicki et al.
6713835 March 30, 2004 Horak et al.
6717189 April 6, 2004 Inoue et al.
6720213 April 13, 2004 Gambino et al.
6736147 May 18, 2004 Satoh et al.
6736987 May 18, 2004 Cho
6740247 May 25, 2004 Han et al.
6740585 May 25, 2004 Yoon et al.
6740977 May 25, 2004 Ahn et al.
6743473 June 1, 2004 Parkhe et al.
6743732 June 1, 2004 Lin et al.
6756235 June 29, 2004 Liu et al.
6759261 July 6, 2004 Shimokohbe et al.
6762127 July 13, 2004 Boiteux et al.
6762435 July 13, 2004 Towle
6764958 July 20, 2004 Nemani et al.
6765273 July 20, 2004 Chau et al.
6767834 July 27, 2004 Chung et al.
6768079 July 27, 2004 Kosakai
6770166 August 3, 2004 Fisher
6772827 August 10, 2004 Keller et al.
6792889 September 21, 2004 Nakano et al.
6794290 September 21, 2004 Papasouliotis et al.
6794311 September 21, 2004 Huang et al.
6796314 September 28, 2004 Graff et al.
6797189 September 28, 2004 Hung et al.
6800336 October 5, 2004 Fornsel et al.
6800830 October 5, 2004 Mahawili
6802944 October 12, 2004 Ahmad et al.
6808564 October 26, 2004 Dietze
6808747 October 26, 2004 Shih et al.
6808748 October 26, 2004 Kapoor et al.
6815633 November 9, 2004 Chen et al.
6821571 November 23, 2004 Huang
6823589 November 30, 2004 White et al.
6828241 December 7, 2004 Kholodenko et al.
6830624 December 14, 2004 Janakiraman et al.
6835995 December 28, 2004 Li
6846745 January 25, 2005 Papasouliotis et al.
6849854 February 1, 2005 Sainty
6852550 February 8, 2005 Tuttle et al.
6852584 February 8, 2005 Chen et al.
6853533 February 8, 2005 Parkhe et al.
6858153 February 22, 2005 Bjorkman et al.
6861097 March 1, 2005 Goosey et al.
6861332 March 1, 2005 Park et al.
6869880 March 22, 2005 Krishnaraj et al.
6875280 April 5, 2005 Ikeda et al.
6878206 April 12, 2005 Tzu et al.
6879981 April 12, 2005 Rothschild et al.
6886491 May 3, 2005 Kim et al.
6892669 May 17, 2005 Xu et al.
6893967 May 17, 2005 Wright et al.
6897532 May 24, 2005 Schwarz et al.
6900596 May 31, 2005 Yang et al.
6903511 June 7, 2005 Chistyakov
6908862 June 21, 2005 Li et al.
6911112 June 28, 2005 An
6911401 June 28, 2005 Khandan et al.
6916399 July 12, 2005 Rozenzon et al.
6921556 July 26, 2005 Shimizu et al.
6924191 August 2, 2005 Liu et al.
6930047 August 16, 2005 Yamazaki
6935269 August 30, 2005 Lee et al.
6942753 September 13, 2005 Choi et al.
6946033 September 20, 2005 Tsuel et al.
6951821 October 4, 2005 Hamelin et al.
6958175 October 25, 2005 Sakamoto et al.
6958286 October 25, 2005 Chen et al.
6969619 November 29, 2005 Winniczek
6995073 February 7, 2006 Liou
7017269 March 28, 2006 White et al.
7018941 March 28, 2006 Cui et al.
7030034 April 18, 2006 Fucsko et al.
7049200 May 23, 2006 Arghavani et al.
7052553 May 30, 2006 Shih et al.
7071532 July 4, 2006 Geffken et al.
7084070 August 1, 2006 Lee et al.
7115525 October 3, 2006 Abatchev et al.
7122949 October 17, 2006 Strikovski
7138767 November 21, 2006 Chen et al.
7145725 December 5, 2006 Hasel et al.
7148155 December 12, 2006 Tarafdar et al.
7166233 January 23, 2007 Johnson et al.
7183214 February 27, 2007 Nam et al.
7196342 March 27, 2007 Ershov et al.
7226805 June 5, 2007 Hallin et al.
7235137 June 26, 2007 Kitayama et al.
7244474 July 17, 2007 Hanawa et al.
7252011 August 7, 2007 Traverso
7252716 August 7, 2007 Kim et al.
7253123 August 7, 2007 Arghavani et al.
7256370 August 14, 2007 Guiver
7274004 September 25, 2007 Benjamin et al.
7288482 October 30, 2007 Panda et al.
7291360 November 6, 2007 Hanawa et al.
7316761 January 8, 2008 Doan et al.
7329608 February 12, 2008 Babayan et al.
7341633 March 11, 2008 Lubomirsky et al.
7344912 March 18, 2008 Okoroanyanwu
7358192 April 15, 2008 Merry et al.
7361865 April 22, 2008 Maki et al.
7364956 April 29, 2008 Saito
7365016 April 29, 2008 Ouellet et al.
7396480 July 8, 2008 Kao et al.
7396773 July 8, 2008 Blosse et al.
7416989 August 26, 2008 Liu et al.
7465358 December 16, 2008 Weidman et al.
7465953 December 16, 2008 Koh et al.
7468319 December 23, 2008 Lee
7479303 January 20, 2009 Byun et al.
7484473 February 3, 2009 Keller et al.
7488688 February 10, 2009 Chung et al.
7494545 February 24, 2009 Lam et al.
7500445 March 10, 2009 Zhao et al.
7513214 April 7, 2009 Okumura et al.
7520957 April 21, 2009 Kao et al.
7553756 June 30, 2009 Hayashi et al.
7575007 August 18, 2009 Tang et al.
7581511 September 1, 2009 Mardian et al.
7604708 October 20, 2009 Wood et al.
7611980 November 3, 2009 Wells
7628897 December 8, 2009 Mungekar et al.
7658799 February 9, 2010 Ishikawa et al.
7682518 March 23, 2010 Chandrachood et al.
7695590 April 13, 2010 Hanawa et al.
7708859 May 4, 2010 Huang et al.
7722925 May 25, 2010 White et al.
7723221 May 25, 2010 Hayashi
7749326 July 6, 2010 Kim et al.
7780790 August 24, 2010 Nogami
7785672 August 31, 2010 Choi et al.
7790634 September 7, 2010 Munro et al.
7806077 October 5, 2010 Lee et al.
7806078 October 5, 2010 Yoshida
7807578 October 5, 2010 Bencher et al.
7825038 November 2, 2010 Ingle et al.
7837828 November 23, 2010 Ikeda et al.
7845309 December 7, 2010 Condrashoff et al.
7867926 January 11, 2011 Satoh et al.
7915139 March 29, 2011 Lang et al.
7922863 April 12, 2011 Ripley
7932181 April 26, 2011 Singh et al.
7939422 May 10, 2011 Ingle et al.
7968441 June 28, 2011 Xu
7976631 July 12, 2011 Burrows
7977249 July 12, 2011 Liu
7981806 July 19, 2011 Jung
7989365 August 2, 2011 Park et al.
8008166 August 30, 2011 Sanchez et al.
8048811 November 1, 2011 Feustel et al.
8058179 November 15, 2011 Draeger et al.
8071482 December 6, 2011 Kawada
8074599 December 13, 2011 Choi et al.
8076198 December 13, 2011 Lee et al.
8083853 December 27, 2011 Choi et al.
8114245 February 14, 2012 Ohmi et al.
8119530 February 21, 2012 Hori et al.
8133349 March 13, 2012 Panagopoulos
8173228 May 8, 2012 Choi et al.
8183134 May 22, 2012 Wu
8187486 May 29, 2012 Liu et al.
8211808 July 3, 2012 Sapre et al.
8216486 July 10, 2012 Dhindsa
8222128 July 17, 2012 Sasaki et al.
8252194 August 28, 2012 Kiehlbauch et al.
8272346 September 25, 2012 Bettencourt et al.
8295089 October 23, 2012 Jeong et al.
8298627 October 30, 2012 Minami et al.
8298959 October 30, 2012 Cheshire
8309440 November 13, 2012 Sanchez et al.
8312839 November 20, 2012 Baek
8313610 November 20, 2012 Dhindsa
8328939 December 11, 2012 Choi et al.
8329262 December 11, 2012 Miller et al.
8336188 December 25, 2012 Monteen
8357435 January 22, 2013 Lubomirsky
8361892 January 29, 2013 Tam et al.
8368308 February 5, 2013 Banna et al.
8390980 March 5, 2013 Sansoni et al.
8427067 April 23, 2013 Espiau et al.
8435902 May 7, 2013 Tang et al.
8440523 May 14, 2013 Guillorn et al.
8466073 June 18, 2013 Wang et al.
8475674 July 2, 2013 Thadani et al.
8480850 July 9, 2013 Tyler et al.
8491805 July 23, 2013 Kushibiki et al.
8501629 August 6, 2013 Tang et al.
8506713 August 13, 2013 Takagi
8512509 August 20, 2013 Bera et al.
8528889 September 10, 2013 Sansoni et al.
8540844 September 24, 2013 Hudson et al.
8551891 October 8, 2013 Liang
8573152 November 5, 2013 De La Llera
8622021 January 7, 2014 Taylor et al.
8623471 January 7, 2014 Tyler et al.
8633423 January 21, 2014 Lin et al.
8642481 February 4, 2014 Wang et al.
8652298 February 18, 2014 Dhindsa et al.
8668836 March 11, 2014 Mizukami et al.
8679982 March 25, 2014 Wang et al.
8679983 March 25, 2014 Wang et al.
8691023 April 8, 2014 Bao et al.
8702902 April 22, 2014 Blom et al.
8741778 June 3, 2014 Yang et al.
8747680 June 10, 2014 Deshpande
8748322 June 10, 2014 Fung et al.
8765574 July 1, 2014 Zhang et al.
8771536 July 8, 2014 Zhang et al.
8771539 July 8, 2014 Zhang et al.
8772888 July 8, 2014 Jung et al.
8778079 July 15, 2014 Begarney et al.
8801952 August 12, 2014 Wang et al.
8802572 August 12, 2014 Nemani et al.
8808563 August 19, 2014 Wang et al.
8815720 August 26, 2014 Godet et al.
8846163 September 30, 2014 Kao et al.
8869742 October 28, 2014 Dhindsa
8871651 October 28, 2014 Choi et al.
8888087 November 18, 2014 Okabe et al.
8894767 November 25, 2014 Goradia et al.
8895449 November 25, 2014 Zhu et al.
8900364 December 2, 2014 Wright
8921234 December 30, 2014 Liu et al.
8927390 January 6, 2015 Sapre et al.
8932947 January 13, 2015 Han et al.
8937017 January 20, 2015 Cheshire et al.
8945414 February 3, 2015 Su et al.
8951429 February 10, 2015 Liu et al.
8956980 February 17, 2015 Chen et al.
8969212 March 3, 2015 Ren et al.
8970114 March 3, 2015 Busche et al.
8980005 March 17, 2015 Carlson et al.
8980758 March 17, 2015 Ling et al.
8980763 March 17, 2015 Wang et al.
8992723 March 31, 2015 Sorensen et al.
8999656 April 7, 2015 Jirstrom et al.
8999839 April 7, 2015 Su et al.
8999856 April 7, 2015 Zhang et al.
9012302 April 21, 2015 Sapre et al.
9017481 April 28, 2015 Pettinger et al.
9023732 May 5, 2015 Wang et al.
9023734 May 5, 2015 Chen et al.
9034770 May 19, 2015 Park et al.
9040422 May 26, 2015 Wang et al.
9064815 June 23, 2015 Zhang et al.
9064816 June 23, 2015 Kim et al.
9072158 June 30, 2015 Ikeda et al.
9093371 July 28, 2015 Wang et al.
9093389 July 28, 2015 Nemani
9093390 July 28, 2015 Wang et al.
9111877 August 18, 2015 Chen et al.
9111907 August 18, 2015 Kamineni
9114438 August 25, 2015 Hoinkis et al.
9117855 August 25, 2015 Cho et al.
9132436 September 15, 2015 Liang et al.
9136273 September 15, 2015 Purayath et al.
9144147 September 22, 2015 Yang et al.
9153442 October 6, 2015 Wang et al.
9159606 October 13, 2015 Purayath et al.
9165783 October 20, 2015 Nemani et al.
9165786 October 20, 2015 Purayath et al.
9184055 November 10, 2015 Wang et al.
9190290 November 17, 2015 Xue et al.
9190293 November 17, 2015 Wang et al.
9190302 November 17, 2015 Ni
9202708 December 1, 2015 Chen et al.
9209012 December 8, 2015 Chen et al.
9236265 January 12, 2016 Korolik et al.
9236266 January 12, 2016 Zhang et al.
9240315 January 19, 2016 Hsieh et al.
9245762 January 26, 2016 Zhang et al.
9263278 February 16, 2016 Purayath et al.
9269590 February 23, 2016 Luere et al.
9275834 March 1, 2016 Park et al.
9287095 March 15, 2016 Nguyen et al.
9287134 March 15, 2016 Wang et al.
9293568 March 22, 2016 Ko
9299537 March 29, 2016 Kobayashi et al.
9299538 March 29, 2016 Kobayashi et al.
9299575 March 29, 2016 Park et al.
9299582 March 29, 2016 Ingle et al.
9299583 March 29, 2016 Wang et al.
9309598 April 12, 2016 Wang et al.
9324576 April 26, 2016 Zhang et al.
9343272 May 17, 2016 Pandit et al.
9343327 May 17, 2016 Zhange et al.
9349605 May 24, 2016 Xu et al.
9355856 May 31, 2016 Wang et al.
9355862 May 31, 2016 Pandit et al.
9355863 May 31, 2016 Chen et al.
9355922 May 31, 2016 Park et al.
9362130 June 7, 2016 Ingle et al.
9362163 June 7, 2016 Danek et al.
9368364 June 14, 2016 Park et al.
9373517 June 21, 2016 Yang et al.
9373522 June 21, 2016 Wang et al.
9378969 June 28, 2016 Hsu et al.
9378978 June 28, 2016 Purayath et al.
9384997 July 5, 2016 Ren et al.
9385028 July 5, 2016 Nemani et al.
9390937 July 12, 2016 Chen et al.
9396961 July 19, 2016 Arghavani et al.
9396989 July 19, 2016 Purayath et al.
9406523 August 2, 2016 Chen et al.
9412608 August 9, 2016 Wang et al.
9418858 August 16, 2016 Wang et al.
9425041 August 23, 2016 Berry et al.
9425058 August 23, 2016 Kim et al.
9431268 August 30, 2016 Lill et al.
9343358 May 17, 2016 Montgomery
9437451 September 6, 2016 Chen et al.
9443749 September 13, 2016 Smith
9449845 September 20, 2016 Liu et al.
9449846 September 20, 2016 Liu et al.
9449850 September 20, 2016 Wang et al.
9460959 October 4, 2016 Xie et al.
9466469 October 11, 2016 Khaja
9472412 October 18, 2016 Zhang et al.
9472417 October 18, 2016 Ingle et al.
9478432 October 25, 2016 Chen et al.
9478433 October 25, 2016 Zhou et al.
9478434 October 25, 2016 Wang et al.
9493879 November 15, 2016 Hoinkis et al.
9496167 November 15, 2016 Purayath et al.
9499898 November 22, 2016 Nguyen et al.
9502258 November 22, 2016 Xue et al.
9508529 November 29, 2016 Valcore et al.
9520303 December 13, 2016 Wang et al.
9543163 January 10, 2017 Ling et al.
9564296 February 7, 2017 Kobayashi et al.
9564338 February 7, 2017 Zhang et al.
9576788 February 21, 2017 Liu et al.
9576809 February 21, 2017 Korolik et al.
9607856 March 28, 2017 Wang et al.
9613822 April 4, 2017 Chen et al.
9659753 May 23, 2017 Cho et al.
9659791 May 23, 2017 Wang et al.
9659792 May 23, 2017 Wang et al.
9666449 May 30, 2017 Koval et al.
9691645 June 27, 2017 Ayers
9704723 July 11, 2017 Wang et al.
9711366 July 18, 2017 Ingle et al.
9721789 August 1, 2017 Yang et al.
9728437 August 8, 2017 Tran et al.
9741593 August 22, 2017 Benjaminson et al.
9754800 September 5, 2017 Zhang et al.
9768034 September 19, 2017 Xu et al.
9773648 September 26, 2017 Cho et al.
9773695 September 26, 2017 Purayath et al.
9779956 October 3, 2017 Zhang et al.
9822009 November 21, 2017 Kagaya et al.
9831097 November 28, 2017 Ingle et al.
9837249 December 5, 2017 Kobayashi et al.
9837284 December 5, 2017 Chen et al.
9837286 December 5, 2017 Yang et al.
9842744 December 12, 2017 Zhang et al.
9865484 January 9, 2018 Citla et al.
9881805 January 30, 2018 Li et al.
9885117 February 6, 2018 Lubomirsky et al.
9887096 February 6, 2018 Park et al.
9903020 February 27, 2018 Kim et al.
9934942 April 3, 2018 Lubomirsky
9947549 April 17, 2018 Park et al.
9966240 May 8, 2018 Park et al.
9978564 May 22, 2018 Liang et al.
9991134 June 5, 2018 Wang et al.
10026621 July 17, 2018 Ko et al.
10032606 July 24, 2018 Yang et al.
10043674 August 7, 2018 Korolik et al.
10043684 August 7, 2018 Arnepalli et al.
10049891 August 14, 2018 Wang et al.
10062578 August 28, 2018 Zhang et al.
10062579 August 28, 2018 Chen et al.
10062585 August 28, 2018 Lubomirsky
10062587 August 28, 2018 Chen et al.
20010006093 July 5, 2001 Tabuchi
20010008803 July 19, 2001 Takamatsu et al.
20010015175 August 23, 2001 Masuda et al.
20010015261 August 23, 2001 Kobayashi et al.
20010028093 October 11, 2001 Yamazaki et al.
20010028922 October 11, 2001 Sandhu
20010029891 October 18, 2001 Oh et al.
20010030366 October 18, 2001 Nakano et al.
20010034106 October 25, 2001 Moise et al.
20010034121 October 25, 2001 Fu et al.
20010035124 November 1, 2001 Okayama et al.
20010036706 November 1, 2001 Kitamura
20010037856 November 8, 2001 Park
20010037941 November 8, 2001 Thompson
20010039921 November 15, 2001 Rolfson et al.
20010042512 November 22, 2001 Xu et al.
20010047760 December 6, 2001 Moslehi
20010053585 December 20, 2001 Kikuchi et al.
20010053610 December 20, 2001 Athavale
20010054381 December 27, 2001 Umotoy et al.
20010054387 December 27, 2001 Frankel et al.
20020000202 January 3, 2002 Yuda et al.
20020001778 January 3, 2002 Latchford et al.
20020009560 January 24, 2002 Ozono
20020009885 January 24, 2002 Brankner et al.
20020011210 January 31, 2002 Satoh et al.
20020011214 January 31, 2002 Kamarehi et al.
20020016080 February 7, 2002 Khan et al.
20020016085 February 7, 2002 Huang et al.
20020023899 February 28, 2002 Khater et al.
20020028582 March 7, 2002 Nallan et al.
20020028585 March 7, 2002 Chung et al.
20020029747 March 14, 2002 Powell et al.
20020033233 March 21, 2002 Savas
20020036143 March 28, 2002 Segawa et al.
20020040764 April 11, 2002 Kwan et al.
20020040766 April 11, 2002 Takahashi
20020043690 April 18, 2002 Doyle et al.
20020045966 April 18, 2002 Lee et al.
20020046991 April 25, 2002 Smith et al.
20020054962 May 9, 2002 Huang
20020062954 May 30, 2002 Getchel et al.
20020069820 June 13, 2002 Yudovsky
20020070414 June 13, 2002 Drescher et al.
20020074573 June 20, 2002 Takeuchi et al.
20020086501 July 4, 2002 O'Donnell et al.
20020090781 July 11, 2002 Skotnicki et al.
20020090835 July 11, 2002 Chakravarti et al.
20020094378 July 18, 2002 O-Donnell
20020094591 July 18, 2002 Sill et al.
20020096493 July 25, 2002 Hattori
20020098681 July 25, 2002 Hu et al.
20020106845 August 8, 2002 Chao et al.
20020112819 August 22, 2002 Kamarehi et al.
20020124867 September 12, 2002 Kim et al.
20020129769 September 19, 2002 Kim et al.
20020129902 September 19, 2002 Babayan et al.
20020144657 October 10, 2002 Chiang et al.
20020153808 October 24, 2002 Skotnicki et al.
20020164885 November 7, 2002 Lill et al.
20020170678 November 21, 2002 Hayashi et al.
20020177322 November 28, 2002 Li et al.
20020179248 December 5, 2002 Kabansky et al.
20020182878 December 5, 2002 Hirose et al.
20020187280 December 12, 2002 Johnson et al.
20020187655 December 12, 2002 Tan et al.
20020197823 December 26, 2002 Yoo et al.
20030000647 January 2, 2003 Yudovsky et al.
20030003757 January 2, 2003 Naltan et al.
20030007910 January 9, 2003 Lazarovich et al.
20030010645 January 16, 2003 Ting et al.
20030019428 January 30, 2003 Ku et al.
20030019580 January 30, 2003 Strang
20030026060 February 6, 2003 Hiramatsu et al.
20030029566 February 13, 2003 Roth
20030029567 February 13, 2003 Dhindsa et al.
20030029715 February 13, 2003 Yu et al.
20030031905 February 13, 2003 Saito et al.
20030032284 February 13, 2003 Enomoto et al.
20030038127 February 27, 2003 Liu et al.
20030038305 February 27, 2003 Wasshuber
20030054608 March 20, 2003 Tseng et al.
20030066482 April 10, 2003 Pokharna et al.
20030071035 April 17, 2003 Brailove
20030072639 April 17, 2003 White et al.
20030075808 April 24, 2003 Inoue et al.
20030077857 April 24, 2003 Xia et al.
20030077909 April 24, 2003 Jiwari
20030079686 May 1, 2003 Chen et al.
20030087488 May 8, 2003 Fink
20030087531 May 8, 2003 Kang et al.
20030091938 May 15, 2003 Fairbairn et al.
20030094134 May 22, 2003 Minami et al.
20030098125 May 29, 2003 An
20030109143 June 12, 2003 Hsieh et al.
20030116087 June 26, 2003 Nguyen et al.
20030116439 June 26, 2003 Seo et al.
20030121608 July 3, 2003 Chen et al.
20030121609 July 3, 2003 Ohmi et al.
20030124465 July 3, 2003 Lee et al.
20030124842 July 3, 2003 Hytros et al.
20030127049 July 10, 2003 Han et al.
20030127740 July 10, 2003 Hsu et al.
20030129106 July 10, 2003 Sorensen et al.
20030129827 July 10, 2003 Lee et al.
20030132319 July 17, 2003 Hytros et al.
20030140844 July 31, 2003 Maa et al.
20030143328 July 31, 2003 Chen et al.
20030148035 August 7, 2003 Lingampalli
20030150530 August 14, 2003 Lin et al.
20030152691 August 14, 2003 Baude
20030159307 August 28, 2003 Sago et al.
20030164226 September 4, 2003 Kanno et al.
20030168439 September 11, 2003 Kanno et al.
20030170945 September 11, 2003 Igeta et al.
20030173333 September 18, 2003 Wang et al.
20030173347 September 18, 2003 Guiver
20030173675 September 18, 2003 Watanabe
20030181040 September 25, 2003 Ivanov et al.
20030183244 October 2, 2003 Rossman
20030190426 October 9, 2003 Padhi et al.
20030196760 October 23, 2003 Tyler et al.
20030199170 October 23, 2003 Li
20030200929 October 30, 2003 Otsuki
20030205329 November 6, 2003 Gujer et al.
20030205479 November 6, 2003 Lin et al.
20030209323 November 13, 2003 Yokogaki et al.
20030215570 November 20, 2003 Seutter et al.
20030215963 November 20, 2003 AmRhein et al.
20030216044 November 20, 2003 Lin et al.
20030221780 December 4, 2003 Lei et al.
20030224217 December 4, 2003 Byun et al.
20030224617 December 4, 2003 Baek et al.
20030230385 December 18, 2003 Bach et al.
20040003828 January 8, 2004 Jackson
20040005726 January 8, 2004 Huang
20040018304 January 29, 2004 Chung et al.
20040020801 February 5, 2004 Solling
20040026371 February 12, 2004 Nguyen et al.
20040033678 February 19, 2004 Arghavani et al.
20040033684 February 19, 2004 Li
20040050328 March 18, 2004 Kumagai et al.
20040058070 March 25, 2004 Takeuchi et al.
20040058293 March 25, 2004 Nguyen et al.
20040060514 April 1, 2004 Janakiraman et al.
20040061447 April 1, 2004 Saigusa et al.
20040069225 April 15, 2004 Fairbairn et al.
20040070346 April 15, 2004 Choi
20040072446 April 15, 2004 Liu et al.
20040076529 April 22, 2004 Gnauck et al.
20040083967 May 6, 2004 Yuda et al.
20040087139 May 6, 2004 Yeh et al.
20040092063 May 13, 2004 Okumura
20040099285 May 27, 2004 Wange et al.
20040099378 May 27, 2004 Kim et al.
20040101667 May 27, 2004 O'Loughlin et al.
20040103844 June 3, 2004 Chou et al.
20040107908 June 10, 2004 Collins et al.
20040108067 June 10, 2004 Fischione et al.
20040108068 June 10, 2004 Senzaki et al.
20040115876 June 17, 2004 Goundar et al.
20040124280 July 1, 2004 Shih et al.
20040129671 July 8, 2004 Ji et al.
20040137161 July 15, 2004 Segawa et al.
20040140053 July 22, 2004 Srivastava et al.
20040144311 July 29, 2004 Chen et al.
20040144490 July 29, 2004 Zhao et al.
20040147126 July 29, 2004 Yamashita et al.
20040149223 August 5, 2004 Collison et al.
20040149394 August 5, 2004 Doan et al.
20040152342 August 5, 2004 Li
20040154535 August 12, 2004 Chen et al.
20040157444 August 12, 2004 Chiu
20040161921 August 19, 2004 Ryu
20040175913 September 9, 2004 Johnson et al.
20040175929 September 9, 2004 Schmitt et al.
20040182315 September 23, 2004 Laflamme et al.
20040187787 September 30, 2004 Dawson
20040192032 September 30, 2004 Ohmori et al.
20040194799 October 7, 2004 Kim et al.
20040195216 October 7, 2004 Strang
20040200499 October 14, 2004 Harvey
20040211357 October 28, 2004 Gadgil et al.
20040219723 November 4, 2004 Peng et al.
20040219737 November 4, 2004 Quon
20040219789 November 4, 2004 Wood et al.
20040221809 November 11, 2004 Ohmi et al.
20040231706 November 25, 2004 Bhatnagar et al.
20040237897 December 2, 2004 Hanawa et al.
20040263827 December 30, 2004 Xu
20050000432 January 6, 2005 Keller et al.
20050001276 January 6, 2005 Gao et al.
20050003676 January 6, 2005 Ho et al.
20050009340 January 13, 2005 Saijo et al.
20050009358 January 13, 2005 Choi et al.
20050026430 February 3, 2005 Kim et al.
20050026431 February 3, 2005 Kazumi et al.
20050035455 February 17, 2005 Hu et al.
20050039679 February 24, 2005 Kleshock
20050051094 March 10, 2005 Schaepkens et al.
20050056218 March 17, 2005 Sun et al.
20050073051 April 7, 2005 Yamamoto et al.
20050079706 April 14, 2005 Kumar et al.
20050087517 April 28, 2005 Ott et al.
20050090078 April 28, 2005 Ishihara
20050090120 April 28, 2005 Hasegawa et al.
20050098111 May 12, 2005 Shimizu et al.
20050103267 May 19, 2005 Hur et al.
20050105991 May 19, 2005 Hofmeister et al.
20050109279 May 26, 2005 Suzuki
20050112876 May 26, 2005 Wu
20050112901 May 26, 2005 Ji et al.
20050123690 June 9, 2005 Derderian et al.
20050136188 June 23, 2005 Chang
20050145341 July 7, 2005 Suzuki
20050164479 July 28, 2005 Perng et al.
20050167394 August 4, 2005 Liu et al.
20050176258 August 11, 2005 Hirose et al.
20050178746 August 18, 2005 Gorin
20050181588 August 18, 2005 Kim
20050183666 August 25, 2005 Tsuji et al.
20050194094 September 8, 2005 Yasaka
20050196967 September 8, 2005 Savas et al.
20050199489 September 15, 2005 Stevens et al.
20050205110 September 22, 2005 Kao et al.
20050205862 September 22, 2005 Koemtzopoulos et al.
20050208215 September 22, 2005 Eguchi et al.
20050208217 September 22, 2005 Shinriki et al.
20050214477 September 29, 2005 Hanawa et al.
20050217582 October 6, 2005 Kim et al.
20050218507 October 6, 2005 Kao et al.
20050219786 October 6, 2005 Brown et al.
20050221552 October 6, 2005 Kao et al.
20050224181 October 13, 2005 Merry et al.
20050229848 October 20, 2005 Shinriki et al.
20050230350 October 20, 2005 Kao et al.
20050236694 October 27, 2005 Wu et al.
20050238807 October 27, 2005 Lin et al.
20050239282 October 27, 2005 Chen et al.
20050251990 November 17, 2005 Choi et al.
20050266622 December 1, 2005 Arghavani et al.
20050266650 December 1, 2005 Ahn et al.
20050266691 December 1, 2005 Gu et al.
20050269030 December 8, 2005 Kent et al.
20050274324 December 15, 2005 Takahashi et al.
20050279454 December 22, 2005 Snijders
20050283321 December 22, 2005 Yue et al.
20050287688 December 29, 2005 Won et al.
20050287755 December 29, 2005 Bachmann
20050287771 December 29, 2005 Seamons et al.
20060000802 January 5, 2006 Kumar et al.
20060000805 January 5, 2006 Todorow et al.
20060005856 January 12, 2006 Sun et al.
20060005930 January 12, 2006 Ikeda et al.
20060006057 January 12, 2006 Laermer
20060008676 January 12, 2006 Ebata et al.
20060011298 January 19, 2006 Lim et al.
20060011299 January 19, 2006 Condrashoff et al.
20060016783 January 26, 2006 Wu et al.
20060019456 January 26, 2006 Bu et al.
20060019477 January 26, 2006 Hanawa et al.
20060019486 January 26, 2006 Yu et al.
20060021574 February 2, 2006 Armour et al.
20060021701 February 2, 2006 Tobe et al.
20060021703 February 2, 2006 Umotoy et al.
20060024954 February 2, 2006 Wu et al.
20060024956 February 2, 2006 Zhijian et al.
20060033678 February 16, 2006 Lubomirsky et al.
20060040055 February 23, 2006 Nguyen et al.
20060043066 March 2, 2006 Kamp
20060046412 March 2, 2006 Nguyen et al.
20060046419 March 2, 2006 Sandhu et al.
20060046470 March 2, 2006 Becknell
20060051966 March 9, 2006 Or et al.
20060051968 March 9, 2006 Joshi et al.
20060054184 March 16, 2006 Mozetic et al.
20060057828 March 16, 2006 Omura et al.
20060060942 March 23, 2006 Minixhofer et al.
20060065629 March 30, 2006 Chen et al.
20060073349 April 6, 2006 Aihara et al.
20060076108 April 13, 2006 Holland et al.
20060087644 April 27, 2006 McMillin et al.
20060090700 May 4, 2006 Satoh et al.
20060093756 May 4, 2006 Rajagopalan et al.
20060097397 May 11, 2006 Russell et al.
20060102076 May 18, 2006 Smith et al.
20060102587 May 18, 2006 Kimura
20060113038 June 1, 2006 Gondhalekar et al.
20060118178 June 8, 2006 Desbiolles et al.
20060118240 June 8, 2006 Holber et al.
20060121724 June 8, 2006 Yue et al.
20060124151 June 15, 2006 Yamasaki et al.
20060124242 June 15, 2006 Kanarik et al.
20060130971 June 22, 2006 Chang et al.
20060151115 July 13, 2006 Kim et al.
20060157449 July 20, 2006 Takahashi et al.
20060162661 July 27, 2006 Jung et al.
20060166107 July 27, 2006 Chen et al.
20060166515 July 27, 2006 Karim et al.
20060169327 August 3, 2006 Shajii et al.
20060169410 August 3, 2006 Maeda et al.
20060178008 August 10, 2006 Yeh et al.
20060183270 August 17, 2006 Humpston
20060185592 August 24, 2006 Matsuura
20060191479 August 31, 2006 Mizukami et al.
20060191637 August 31, 2006 Zajac et al.
20060207504 September 21, 2006 Hasebe et al.
20060207595 September 21, 2006 Ohmi et al.
20060207971 September 21, 2006 Moriya et al.
20060210713 September 21, 2006 Brcka
20060210723 September 21, 2006 Ishizaka
20060215347 September 28, 2006 Wakabayashi et al.
20060216878 September 28, 2006 Lee
20060219360 October 5, 2006 Iwasaki
20060222481 October 5, 2006 Foree
20060226121 October 12, 2006 Aoi
20060228889 October 12, 2006 Edelberg et al.
20060240661 October 26, 2006 Annapragada et al.
20060244107 November 2, 2006 Sugihara
20060245852 November 2, 2006 Iwabuchi
20060246217 November 2, 2006 Weidman et al.
20060251800 November 9, 2006 Weidman et al.
20060251801 November 9, 2006 Weidman et al.
20060252252 November 9, 2006 Zhu et al.
20060252265 November 9, 2006 Jin et al.
20060254716 November 16, 2006 Mosden et al.
20060260750 November 23, 2006 Rueger
20060261490 November 23, 2006 Su et al.
20060264043 November 23, 2006 Stewart et al.
20060266288 November 30, 2006 Choi
20060286774 December 21, 2006 Singh et al.
20060289384 December 28, 2006 Pavel et al.
20060292846 December 28, 2006 Pinto et al.
20070022952 February 1, 2007 Ritchie et al.
20070025907 February 1, 2007 Rezeq
20070039548 February 22, 2007 Johnson
20070048977 March 1, 2007 Lee et al.
20070051471 March 8, 2007 Kawaguchi et al.
20070056925 March 15, 2007 Liu et al.
20070062453 March 22, 2007 Ishikawa
20070066084 March 22, 2007 Wajda et al.
20070071888 March 29, 2007 Shanmugasundram et al.
20070072408 March 29, 2007 Enomoto et al.
20070077737 April 5, 2007 Kobayashi
20070079758 April 12, 2007 Holland et al.
20070090325 April 26, 2007 Hwang et al.
20070099428 May 3, 2007 Shamiryan et al.
20070099431 May 3, 2007 Li
20070099438 May 3, 2007 Ye et al.
20070107750 May 17, 2007 Sawin et al.
20070108404 May 17, 2007 Stewart et al.
20070111519 May 17, 2007 Lubomirsky et al.
20070117396 May 24, 2007 Wu et al.
20070119370 May 31, 2007 Ma et al.
20070119371 May 31, 2007 Ma et al.
20070123051 May 31, 2007 Arghavani
20070128864 June 7, 2007 Ma
20070131274 June 14, 2007 Stollwerck et al.
20070145023 June 28, 2007 Holber et al.
20070154838 July 5, 2007 Lee
20070163440 July 19, 2007 Kim et al.
20070175861 August 2, 2007 Hwang et al.
20070181057 August 9, 2007 Lam et al.
20070193515 August 23, 2007 Jeon et al.
20070197028 August 23, 2007 Byun et al.
20070207275 September 6, 2007 Nowak et al.
20070212288 September 13, 2007 Holst
20070221620 September 27, 2007 Sakthivel et al.
20070227554 October 4, 2007 Satoh et al.
20070231109 October 4, 2007 Pak et al.
20070232071 October 4, 2007 Balseanu et al.
20070235134 October 11, 2007 Limuro
20070238199 October 11, 2007 Yamashita
20070238321 October 11, 2007 Futase et al.
20070243685 October 18, 2007 Jiang et al.
20070243714 October 18, 2007 Shin et al.
20070254169 November 1, 2007 Kamins et al.
20070259467 November 8, 2007 Tweet et al.
20070264820 November 15, 2007 Liu
20070266946 November 22, 2007 Choi
20070277734 December 6, 2007 Lubomirsky et al.
20070280816 December 6, 2007 Kurita et al.
20070281106 December 6, 2007 Lubomirsky et al.
20070287292 December 13, 2007 Li et al.
20070296967 December 27, 2007 Gupta et al.
20080003836 January 3, 2008 Nishimura et al.
20080017104 January 24, 2008 Matyushkin et al.
20080020570 January 24, 2008 Naik
20080035608 February 14, 2008 Thomas et al.
20080044593 February 21, 2008 Seo et al.
20080044990 February 21, 2008 Lee
20080050538 February 28, 2008 Hirata
20080063810 March 13, 2008 Park et al.
20080075668 March 27, 2008 Goldstein
20080081483 April 3, 2008 Wu
20080085604 April 10, 2008 Hoshino et al.
20080099147 May 1, 2008 Myo et al.
20080099431 May 1, 2008 Kumar et al.
20080099876 May 1, 2008 Seto
20080100222 May 1, 2008 Lewington et al.
20080102570 May 1, 2008 Fischer et al.
20080102640 May 1, 2008 Hassan et al.
20080102646 May 1, 2008 Kawaguchi et al.
20080104782 May 8, 2008 Hughes
20080105555 May 8, 2008 Iwazaki et al.
20080115726 May 22, 2008 Ingle et al.
20080121970 May 29, 2008 Aritome
20080124937 May 29, 2008 Xu et al.
20080142831 June 19, 2008 Su
20080153306 June 26, 2008 Cho et al.
20080156631 July 3, 2008 Fair et al.
20080156771 July 3, 2008 Jeon et al.
20080157225 July 3, 2008 Datta et al.
20080160210 July 3, 2008 Yang et al.
20080169588 July 17, 2008 Shih et al.
20080171407 July 17, 2008 Nakabayashi et al.
20080173906 July 24, 2008 Zhu
20080176412 July 24, 2008 Komeda
20080178797 July 31, 2008 Fodor et al.
20080178805 July 31, 2008 Paterson et al.
20080182381 July 31, 2008 Kiyotoshi
20080182382 July 31, 2008 Ingle et al.
20080182383 July 31, 2008 Lee et al.
20080196666 August 21, 2008 Toshima
20080202688 August 28, 2008 Wu et al.
20080202892 August 28, 2008 Smith et al.
20080216901 September 11, 2008 Chamberlain et al.
20080216958 September 11, 2008 Goto et al.
20080230519 September 25, 2008 Takahashi
20080233709 September 25, 2008 Conti et al.
20080236751 October 2, 2008 Aramaki et al.
20080254635 October 16, 2008 Benzel et al.
20080261404 October 23, 2008 Kozuka et al.
20080264337 October 30, 2008 Sano et al.
20080268645 October 30, 2008 Kao et al.
20080292798 November 27, 2008 Huh et al.
20080293248 November 27, 2008 Park et al.
20090000743 January 1, 2009 Iizuka
20090001480 January 1, 2009 Cheng
20090004849 January 1, 2009 Eun
20090004873 January 1, 2009 Yang
20090014127 January 15, 2009 Shah et al.
20090014323 January 15, 2009 Yendler et al.
20090014324 January 15, 2009 Kawaguchi et al.
20090017227 January 15, 2009 Fu et al.
20090036292 February 5, 2009 Sun et al.
20090045167 February 19, 2009 Maruyama
20090072401 March 19, 2009 Arnold et al.
20090081878 March 26, 2009 Dhindsa
20090084317 April 2, 2009 Wu et al.
20090087960 April 2, 2009 Cho et al.
20090087979 April 2, 2009 Raghuram
20090095221 April 16, 2009 Tam et al.
20090095222 April 16, 2009 Tam et al.
20090095621 April 16, 2009 Kao et al.
20090098276 April 16, 2009 Burrows
20090098706 April 16, 2009 Kim et al.
20090104738 April 23, 2009 Ring et al.
20090104782 April 23, 2009 Lu et al.
20090111280 April 30, 2009 Kao et al.
20090117270 May 7, 2009 Yamasaki et al.
20090120464 May 14, 2009 Rasheed et al.
20090162647 June 25, 2009 Sun et al.
20090170221 July 2, 2009 Jacques et al.
20090170331 July 2, 2009 Cheng et al.
20090179300 July 16, 2009 Arai
20090189246 July 30, 2009 Wu et al.
20090189287 July 30, 2009 Yang et al.
20090191711 July 30, 2009 Rui et al.
20090194233 August 6, 2009 Tamura
20090194810 August 6, 2009 Kiyotoshi et al.
20090197418 August 6, 2009 Sago
20090202721 August 13, 2009 Nogami et al.
20090214825 August 27, 2009 Sun et al.
20090223928 September 10, 2009 Colpo
20090236314 September 24, 2009 Chen
20090255902 October 15, 2009 Satoh et al.
20090258162 October 15, 2009 Furuta et al.
20090269934 October 29, 2009 Kao et al.
20090274590 November 5, 2009 Willwerth et al.
20090275146 November 5, 2009 Takano et al.
20090275205 November 5, 2009 Kiehlbauch et al.
20090275206 November 5, 2009 Katz et al.
20090277587 November 12, 2009 Lubomirsky et al.
20090277874 November 12, 2009 Rui et al.
20090280650 November 12, 2009 Lubomirsky et al.
20090286400 November 19, 2009 Heo et al.
20090286405 November 19, 2009 Okesaku et al.
20090317978 December 24, 2009 Higashi
20090293809 December 3, 2009 Cho et al.
20090294898 December 3, 2009 Feustel et al.
20090320756 December 31, 2009 Tanaka
20100000683 January 7, 2010 Kadkhodayan et al.
20100003824 January 7, 2010 Kadkhodayan et al.
20100006543 January 14, 2010 Sawada et al.
20100022030 January 28, 2010 Ditizio
20100025370 February 4, 2010 Dieguez-Campo et al.
20100039747 February 18, 2010 Sansoni
20100047080 February 25, 2010 Bruce
20100048027 February 25, 2010 Cheng et al.
20100055408 March 4, 2010 Lee et al.
20100055917 March 4, 2010 Kim
20100059889 March 11, 2010 Gosset et al.
20100062603 March 11, 2010 Ganguly et al.
20100075503 March 25, 2010 Bencher
20100081285 April 1, 2010 Chen et al.
20100093151 April 15, 2010 Arghavani et al.
20100093168 April 15, 2010 Naik
20100096367 April 22, 2010 Jeon et al.
20100099236 April 22, 2010 Kwon et al.
20100099263 April 22, 2010 Kao
20100101727 April 29, 2010 Ji
20100105209 April 29, 2010 Winniczek et al.
20100116788 May 13, 2010 Singh et al.
20100119843 May 13, 2010 Sun et al.
20100129974 May 27, 2010 Futase et al.
20100130001 May 27, 2010 Noguchi
20100139889 June 10, 2010 Kurita et al.
20100144140 June 10, 2010 Chandrashekar et al.
20100147219 June 17, 2010 Hsieh et al.
20100151149 June 17, 2010 Ovshinsky
20100164422 July 1, 2010 Shu et al.
20100173499 July 8, 2010 Tao et al.
20100178748 July 15, 2010 Subramanian
20100178755 July 15, 2010 Lee et al.
20100180819 July 22, 2010 Hatanaka et al.
20100183825 July 22, 2010 Becker et al.
20100187534 July 29, 2010 Nishi et al.
20100187588 July 29, 2010 Kim et al.
20100187694 July 29, 2010 Yu et al.
20100190352 July 29, 2010 Jaiswal
20100197143 August 5, 2010 Nishimura
20100203739 August 12, 2010 Becker et al.
20100207205 August 19, 2010 Grebs et al.
20100224324 September 9, 2010 Kasai
20100240205 September 23, 2010 Son
20100243165 September 30, 2010 Um
20100243606 September 30, 2010 Koshimizu
20100244204 September 30, 2010 Matsuoka et al.
20100252068 October 7, 2010 Kannan et al.
20100258913 October 14, 2010 Lue
20100267224 October 21, 2010 Choi et al.
20100267248 October 21, 2010 Ma et al.
20100273290 October 28, 2010 Kryliouk
20100273291 October 28, 2010 Kryliouk et al.
20100288369 November 18, 2010 Chang et al.
20100294199 November 25, 2010 Tran et al.
20100310785 December 9, 2010 Sasakawa et al.
20100314005 December 16, 2010 Saito et al.
20100330814 December 30, 2010 Yokota et al.
20110005607 January 13, 2011 Desbiolles et al.
20110005684 January 13, 2011 Hayami et al.
20110008950 January 13, 2011 Xu
20110011338 January 20, 2011 Chuc et al.
20110034035 February 10, 2011 Liang et al.
20110039407 February 17, 2011 Nishizuka
20110042799 February 24, 2011 Kim et al.
20110045676 February 24, 2011 Park
20110048325 March 3, 2011 Choie et al.
20110053380 March 3, 2011 Sapre et al.
20110058303 March 10, 2011 Migita
20110061810 March 17, 2011 Ganguly et al.
20110061812 March 17, 2011 Ganguly et al.
20110065276 March 17, 2011 Ganguly et al.
20110076401 March 31, 2011 Chao et al.
20110081782 April 7, 2011 Liang et al.
20110100489 May 5, 2011 Orito
20110104393 May 5, 2011 Hilkene et al.
20110111596 May 12, 2011 Kanakasabapathy
20110114601 May 19, 2011 Lubomirsky et al.
20110115378 May 19, 2011 Lubomirsky et al.
20110124144 May 26, 2011 Schlemm et al.
20110127156 June 2, 2011 Foad et al.
20110133650 June 9, 2011 Kim
20110140229 June 16, 2011 Rachmady et al.
20110143542 June 16, 2011 Feurprier et al.
20110146909 June 23, 2011 Shi et al.
20110147363 June 23, 2011 Yap et al.
20110151674 June 23, 2011 Tang et al.
20110151677 June 23, 2011 Wang et al.
20110151678 June 23, 2011 Ashtiani et al.
20110155181 June 30, 2011 Inatomi
20110159690 June 30, 2011 Chandrashekar et al.
20110165057 July 7, 2011 Honda et al.
20110165347 July 7, 2011 Miller et al.
20110165771 July 7, 2011 Ring et al.
20110174778 July 21, 2011 Sawada et al.
20110180847 July 28, 2011 Ikeda et al.
20110195575 August 11, 2011 Wang
20110198034 August 18, 2011 Sun et al.
20110204025 August 25, 2011 Tahara
20110207332 August 25, 2011 Liu et al.
20110217851 September 8, 2011 Liang et al.
20110226734 September 22, 2011 Sumiya et al.
20110227028 September 22, 2011 Sekar et al.
20110230008 September 22, 2011 Lakshmanan et al.
20110230052 September 22, 2011 Tang et al.
20110232737 September 29, 2011 Ruletzki et al.
20110232845 September 29, 2011 Riker et al.
20110244686 October 6, 2011 Aso et al.
20110244693 October 6, 2011 Tamura et al.
20110256421 October 20, 2011 Bose et al.
20110265884 November 3, 2011 Xu et al.
20110265887 November 3, 2011 Lee et al.
20110265951 November 3, 2011 Xu
20110266252 November 3, 2011 Thadani et al.
20110266256 November 3, 2011 Cruse et al.
20110266682 November 3, 2011 Edelstein et al.
20110278260 November 17, 2011 Lai et al.
20110287633 November 24, 2011 Lee et al.
20110294300 December 1, 2011 Zhang et al.
20110298061 December 8, 2011 Siddiqui et al.
20110304078 December 15, 2011 Lee et al.
20120003782 January 5, 2012 Byun et al.
20120009796 January 12, 2012 Cui et al.
20120025289 February 2, 2012 Liang et al.
20120031559 February 9, 2012 Dhindsa et al.
20120034786 February 9, 2012 Dhindsa et al.
20120035766 February 9, 2012 Shajii et al.
20120037596 February 16, 2012 Eto et al.
20120040492 February 16, 2012 Ovshinsky et al.
20120052683 March 1, 2012 Kim et al.
20120055402 March 8, 2012 Moriya et al.
20120068242 March 22, 2012 Shin et al.
20120070982 March 22, 2012 Yu et al.
20120070996 March 22, 2012 Hao et al.
20120091108 April 19, 2012 Lin et al.
20120097330 April 26, 2012 Iyengar et al.
20120100720 April 26, 2012 Winniczek et al.
20120103518 May 3, 2012 Kakimoto
20120104564 May 3, 2012 Won et al.
20120119225 May 17, 2012 Shiomi et al.
20120122319 May 17, 2012 Shimizu
20120129354 May 24, 2012 Luong
20120135576 May 31, 2012 Lee et al.
20120148369 June 14, 2012 Michalski et al.
20120149200 June 14, 2012 Culp et al.
20120161405 June 28, 2012 Mohn et al.
20120164839 June 28, 2012 Nishimura
20120171852 July 5, 2012 Yuan et al.
20120180954 July 19, 2012 Yang et al.
20120181599 July 19, 2012 Lung
20120182808 July 19, 2012 Lue et al.
20120187844 July 26, 2012 Hoffman et al.
20120196447 August 2, 2012 Yang et al.
20120196451 August 2, 2012 Mallick
20120202408 August 9, 2012 Shajii et al.
20120208361 August 16, 2012 Ha
20120211462 August 23, 2012 Zhang et al.
20120211722 August 23, 2012 Kellam et al.
20120222616 September 6, 2012 Han et al.
20120222815 September 6, 2012 Sabri et al.
20120223048 September 6, 2012 Paranjpe et al.
20120223418 September 6, 2012 Stowers et al.
20120225557 September 6, 2012 Serry et al.
20120228642 September 13, 2012 Aube et al.
20120234945 September 20, 2012 Olgado
20120238102 September 20, 2012 Zhang et al.
20120238103 September 20, 2012 Zhang et al.
20120238108 September 20, 2012 Chen et al.
20120241411 September 27, 2012 Darling et al.
20120247390 October 4, 2012 Sawada et al.
20120247670 October 4, 2012 Dobashi et al.
20120247671 October 4, 2012 Sugawara
20120247677 October 4, 2012 Himori et al.
20120255491 October 11, 2012 Hahidi
20120258600 October 11, 2012 Godet et al.
20120267346 October 25, 2012 Kao et al.
20120269968 October 25, 2012 Rayner
20120282779 November 8, 2012 Arnold et al.
20120285619 November 15, 2012 Matyushkin et al.
20120285621 November 15, 2012 Tan
20120291696 November 22, 2012 Clarke
20120292664 November 22, 2012 Kanike
20120304933 December 6, 2012 Mai et al.
20120309204 December 6, 2012 Kang et al.
20120309205 December 6, 2012 Wang et al.
20120322015 December 20, 2012 Kim
20130001899 January 3, 2013 Hwang et al.
20130005103 January 3, 2013 Liu et al.
20130005140 January 3, 2013 Jeng et al.
20130012030 January 10, 2013 Lakshmanan et al.
20130012032 January 10, 2013 Liu et al.
20130023062 January 24, 2013 Masuda et al.
20130023124 January 24, 2013 Nemani et al.
20130026135 January 31, 2013 Kim
20130032574 February 7, 2013 Liu et al.
20130034666 February 7, 2013 Liang et al.
20130034968 February 7, 2013 Zhang et al.
20130037919 February 14, 2013 Sapra et al.
20130045605 February 21, 2013 Wang et al.
20130052804 February 28, 2013 Song
20130052827 February 28, 2013 Wang et al.
20130052833 February 28, 2013 Ranjan et al.
20130059440 March 7, 2013 Wang et al.
20130062675 March 14, 2013 Thomas
20130065398 March 14, 2013 Ohsawa et al.
20130082197 April 4, 2013 Yang et al.
20130084654 April 4, 2013 Gaylord et al.
20130087309 April 11, 2013 Volfovski
20130089988 April 11, 2013 Wang et al.
20130098868 April 25, 2013 Nishimura et al.
20130105303 May 2, 2013 Lubomirsky et al.
20130105948 May 2, 2013 Kewley
20130115372 May 9, 2013 Pavol et al.
20130118686 May 16, 2013 Carducci et al.
20130119016 May 16, 2013 Kagoshima
20130119457 May 16, 2013 Lue et al.
20130119483 May 16, 2013 Alptekin et al.
20130130507 May 23, 2013 Wang et al.
20130150303 June 13, 2013 Kungl et al.
20130155568 June 20, 2013 Todorow et al.
20130161726 June 27, 2013 Kim et al.
20130171810 July 4, 2013 Sun et al.
20130175654 July 11, 2013 Muckenhirn et al.
20130187220 July 25, 2013 Surthi
20130193108 August 1, 2013 Zheng
20130213935 August 22, 2013 Liao et al.
20130217243 August 22, 2013 Underwood et al.
20130224953 August 29, 2013 Salinas et al.
20130224960 August 29, 2013 Payyapilly et al.
20130260533