Patents by Inventor Lam Ho

Lam Ho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10317968
    Abstract: An integrated circuit is disclosed for power multiplexing with an active load. In an example aspect, the integrated circuit includes a first power rail, a second power rail, a load power rail, multiple power-multiplexer tiles, and power-multiplexer control circuitry. The first power rail is at a first voltage, and the second power rail is at a second voltage. The multiple power-multiplexer tiles are coupled in series in a chained arrangement and jointly perform a power-multiplexing operation responsive to a power-rail switching signal. Each power-multiplexer tile switches between coupling the load power rail to the first power rail and the second power rail. The power-multiplexer control circuitry is coupled to the first and second power rails and includes a comparator to produce a relative voltage signal based on the first and second voltages. The power-multiplexer control circuitry generates the power-rail switching signal based on the relative voltage signal.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: June 11, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Harshat Pant, Rajeev Jain, Sassan Shahrokhinia, Lam Ho
  • Publication number: 20190154930
    Abstract: Connector assemblies are described herein. For example, a connector assembly including: a housing configured to accept a first ferrule and a second ferrule. The connector assembly may also have a push/pull clip that is configure to depress a protrusion that rotates down a connector device to remove the connector assembly from an adapter. The push/pull clip is integrated with a cable boot assembly that allows a user to apply a distal force to remove or insert the connector assembly into the adapter housing. The push/pull clip is configured for use to release a MPO and LC connector type from an adapter.
    Type: Application
    Filed: October 15, 2018
    Publication date: May 23, 2019
    Inventors: Man Ming HO, Hiu Lam Leung, Kazuyoshi Takano
  • Patent number: 10273446
    Abstract: The present disclosure provides compositions and methods for using recombinant C1 metabolizing microorganisms capable of metabolizing sulfur containing compounds and other contaminants to biologically convert sour or acidic natural gas into high-value molecules, and to allow recovery of stranded oil.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: April 30, 2019
    Assignee: Calysta, Inc.
    Inventors: Howard Lam Ho Fong, John H Grate, Luan Nguyen, Joshua A. Silverman, Lisa Marie Newman, Lorraine Joan Giver, Drew D. Regitsky
  • Publication number: 20190086946
    Abstract: Aspects of the disclosure are directed to reducing clock-ungating induced voltage droop by determining a maximum frequency value associated with an output clock waveform; modulating a clock frequency of the output clock waveform for a first time duration based on a first programmable mask pattern or a first Boolean function; and determining if either the first programmable mask pattern or the first Boolean function should be changed. In accordance with one aspect, a voltage droop mitigation circuit includes a control logic for receiving an input clock waveform and a clock enable signal waveform and for outputting a gated clock enable signal waveform; a latch coupled to the control logic, the latch for holding a state of the gated clock enable signal waveform and a AND gate coupled to the latch, the AND gate for outputting an output clock waveform.
    Type: Application
    Filed: November 16, 2018
    Publication date: March 21, 2019
    Inventors: Martin SAINT-LAURENT, Lam HO, Carlos Andres RODRIGUEZ ANCER, Bhavin SHAH
  • Publication number: 20180348809
    Abstract: Aspects of the disclosure are directed to reducing clock-ungating induced voltage droop by determining a maximum frequency value associated with an output clock waveform; modulating a clock frequency of the output clock waveform for a first time duration based on a first programmable mask pattern or a first Boolean function; and determining if either the first programmable mask pattern or the first Boolean function should be changed. In accordance with one aspect, a voltage droop mitigation circuit includes a control logic for receiving an input clock waveform and a clock enable signal waveform and for outputting a gated clock enable signal waveform; a latch coupled to the control logic, the latch for holding a state of the gated clock enable signal waveform and a AND gate coupled to the latch, the AND gate for outputting an output clock waveform.
    Type: Application
    Filed: June 5, 2017
    Publication date: December 6, 2018
    Inventors: Martin Saint-Laurent, Lam Ho, Carlos Andres Rodriguez Ancer, Bhavin Shah
  • Publication number: 20180284859
    Abstract: An integrated circuit is disclosed for power multiplexing with an active load. In an example aspect, the integrated circuit includes a first power rail, a second power rail, a load power rail, multiple power-multiplexer tiles, and power-multiplexer control circuitry. The first power rail is at a first voltage, and the second power rail is at a second voltage. The multiple power-multiplexer tiles are coupled in series in a chained arrangement and jointly perform a power-multiplexing operation responsive to a power-rail switching signal. Each power-multiplexer tile switches between coupling the load power rail to the first power rail and the second power rail. The power-multiplexer control circuitry is coupled to the first and second power rails and includes a comparator to produce a relative voltage signal based on the first and second voltages. The power-multiplexer control circuitry generates the power-rail switching signal based on the relative voltage signal.
    Type: Application
    Filed: March 28, 2017
    Publication date: October 4, 2018
    Inventors: Harshat Pant, Rajeev Jain, Sassan Shahrokhinia, Lam Ho
  • Publication number: 20180183417
    Abstract: In certain aspects, a system comprises a voltage-droop mitigation circuit configured to monitor voltage droop in a supply voltage supplied to a circuit, and to perform voltage-droop mitigation for the circuit if the monitored voltage droop is equal to or greater than a droop threshold. In one aspect, the system also includes a performance monitor configured to track a number of clock cycles over which the voltage-droop mitigation circuit performs the voltage-droop mitigation within a time duration, and to adjust the droop threshold based on the number of clock cycles. In another aspect, the system also includes a performance monitor configured to track a number of times that the voltage-droop mitigation circuit performs the voltage-droop mitigation within a time duration, and to adjust the droop threshold based on the number of times that the voltage-droop mitigation circuit performs the voltage-droop mitigation within the time duration.
    Type: Application
    Filed: December 28, 2016
    Publication date: June 28, 2018
    Inventors: Lam Ho, Keith Alan Bowman, Navid Toosizadeh, Shih-Hsin Jason Hu, Mohammad Reza Kakoee, Saravana Krishnan Kannan
  • Patent number: 10009016
    Abstract: In certain aspects, a system comprises a voltage-droop mitigation circuit configured to monitor voltage droop in a supply voltage supplied to a circuit, and to perform voltage-droop mitigation for the circuit if the monitored voltage droop is equal to or greater than a droop threshold. In one aspect, the system also includes a performance monitor configured to track a number of clock cycles over which the voltage-droop mitigation circuit performs the voltage-droop mitigation within a time duration, and to adjust the droop threshold based on the number of clock cycles. In another aspect, the system also includes a performance monitor configured to track a number of times that the voltage-droop mitigation circuit performs the voltage-droop mitigation within a time duration, and to adjust the droop threshold based on the number of times that the voltage-droop mitigation circuit performs the voltage-droop mitigation within the time duration.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: June 26, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Lam Ho, Keith Alan Bowman, Navid Toosizadeh, Shih-Hsin Jason Hu, Mohammad Reza Kakoee, Saravana Krishnan Kannan
  • Patent number: 9955296
    Abstract: A temperature control apparatus for controlling operation of at least one temperature-modifying device includes a housing, a wireless communication module configured to communicate with a remote Internet-based server, and a controller in communication with the wireless communication module. The controller is configured to: (i) control operation of the temperature modifying device in response to a comparison of a measured ambient temperature with a setpoint temperature, (ii) in a user-selectable first mode of operation, during a first time period during a day, poll the remote server at a first rate of at least six times per hour, using the wireless communication module, for an instruction to change the setpoint temperature, and (iii) in the first mode of operation, during a second time period, poll the remote server at a second rate that is lower than the first rate, using the wireless communication module, for an instruction to change the setpoint temperature.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: April 24, 2018
    Assignee: EDWIN MCAULEY ELECTRONICS LTD.
    Inventors: Jerry Yau Fung Pun, Anson Yeuk Lam Ho, Vincent Wai Sing Law
  • Publication number: 20170201953
    Abstract: A temperature control apparatus for controlling operation of at least one temperature-modifying device includes a housing, a wireless communication module configured to communicate with a remote Internet-based server, and a controller in communication with the wireless communication module. The controller is configured to: (i) control operation of the temperature modifying device in response to a comparison of a measured ambient temperature with a setpoint temperature, (ii) in a user-selectable first mode of operation, during a first time period during a day, poll the remote server at a first rate of at least six times per hour, using the wireless communication module, for an instruction to change the setpoint temperature, and (iii) in the first mode of operation, during a second time period, poll the remote server at a second rate that is lower than the first rate, using the wireless communication module, for an instruction to change the setpoint temperature.
    Type: Application
    Filed: January 13, 2016
    Publication date: July 13, 2017
    Inventors: Jerry YAU FUNG PUN, Anson YEUK LAM HO, Vincent WAI SING LAW
  • Publication number: 20170195914
    Abstract: Hardware acceleration for batched sparse (BATS) codes is enabled. Hardware implementation of some timing-critical procedures can effectively offload computationally intensive overheads, for example, finite field arithmetic, Gaussian elimination, and belief propagation (BP) calculations, and this can be done without direct mapping of software codes to a hardware implementation. Suitable acceleration hardware may include pipelined multipliers configured to multiply input data with coefficients of a matrix associated with a random linear network code in a pipelined manner, addition components configured to add multiplier output to feedback data, and switches to direct data flows to and from memory components such that valid result data is not overwritten and such that feedback data corresponds to most recent valid result data. Acceleration hardware components (e.g., number and configuration) may be dynamically adjusted to modify BATS code parameters and adapt to changing network conditions.
    Type: Application
    Filed: December 30, 2016
    Publication date: July 6, 2017
    Inventors: Shenghao Yang, Wai-ho Yeung, Tak-lon Chao, Kin-Hong Lee, Chi-lam Ho
  • Publication number: 20160333307
    Abstract: The present disclosure provides compositions and methods for using recombinant C1 metabolizing microorganisms capable of metabolizing sulfur containing compounds and other contaminants to biologically convert sour or acidic natural gas into high-value molecules, and to allow recovery of stranded oil.
    Type: Application
    Filed: January 16, 2015
    Publication date: November 17, 2016
    Inventors: Howard Lam Ho Fong, John H Grate, Luan Nguyen, Joshua A. Silverman, Lisa Marie Newman, Lorraine Joan Giver, Drew D. Regitsky
  • Publication number: 20140000696
    Abstract: This invention relates to a class of ruthenium(II) bis(aryleneethynylene) complexes for use in bulk heterojunction (BHJ) solar cell devices, and the method of synthesizing thereof. This invention also relates to a BHJ solar cell device comprising the ruthenium(II) bis(aryleneethynylene) complex.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 2, 2014
    Inventors: Wai-Yeung Wong, Qian Liu, Cheuk-Lam Ho
  • Patent number: 8115039
    Abstract: A process for making primary haloalkanes by catalytic distillation of internal haloalkanes which comprises a) introducing an internal haloalkane feed into a catalytic distillation column; b) isomerizing at least a portion of the internal haloalkane feed in the presence of an internal haloalkane isomerization catalyst at a temperature at or above the boiling point of the internal haloalkanes and below the temperature and pressure at which hydrogen halide is formed to form primary haloalkanes; and removing the primary haloalkanes from the catalytic distillation column.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: February 14, 2012
    Assignee: Shell Oil Company
    Inventors: Howard Lam-Ho Fong, Brendan Dermot Murray, Thomas Carl Semple
  • Patent number: 8017822
    Abstract: An integrated process for producing aromatic hydrocarbons and ethylene and/or propylene and optionally other lower olefins from low molecular weight hydrocarbons, preferably methane, which comprises: (a) contacting at least one low molecular weight alkane, preferably methane, with a halogen, preferably bromine, under process conditions sufficient to produce a monohaloalkane, preferably monobromomethane, (b) reacting the monohaloalkane in the presence of a coupling catalyst to produce aromatic hydrocarbons and C2+ alkanes, (c) separating the aromatic hydrocarbons from the product mixture of step (b) to produce aromatic hydrocarbons, and (d) cracking at least part of the C2+ alkanes in an alkane cracking system to produce ethylene and/or propylene and optionally other lower olefins.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: September 13, 2011
    Assignee: Shell Oil Company
    Inventors: Howard Lam Ho Fong, Richard Dale Swain
  • Publication number: 20100234637
    Abstract: An integrated process for producing aromatic hydrocarbons and ethylene and/or propylene and optionally other lower olefins from low molecular weight hydrocarbons, preferably methane, which comprises: (a) contacting one or more low molecular weight alkanes, preferably methane, with a halogen, preferably bromine, under process conditions sufficient to produce a monohaloalkane, preferably monobromomethane, (b) reacting a first portion of the monohaloalkane in the presence of a coupling catalyst under process conditions sufficient to produce aromatic hydrocarbons and C2-5 alkanes, (c) separating the aromatic hydrocarbons from the product mixture of step (b) to produce aromatic hydrocarbons, (d) reacting a second portion of the monohaloalkane in the presence of a coupling catalyst under process conditions sufficient to produce ethylene and/or propylene.
    Type: Application
    Filed: March 15, 2010
    Publication date: September 16, 2010
    Inventors: Howard Lam Ho FONG, Richard Dale Swain
  • Publication number: 20100087686
    Abstract: An integrated process for producing aromatic hydrocarbons and ethylene and/or propylene and optionally other lower olefins from low molecular weight hydrocarbons, preferably methane, which comprises: (a) contacting at least one low molecular weight alkane, preferably methane, with a halogen, preferably bromine. under process conditions sufficient to produce a monohaloalkane, preferably monobromomethane, (b) reacting the monohaloalkane in the presence of a coupling catalyst to produce aromatic hydrocarbons and C2+ alkanes, (c) separating the aromatic hydrocarbons from the product mixture of step (b) to produce aromatic hydrocarbons, and (d) cracking at least part of the C2+ alkanes in an alkane cracking system to produce ethylene and/or propylene and optionally other lower olefins.
    Type: Application
    Filed: October 5, 2009
    Publication date: April 8, 2010
    Inventors: Howard Lam Ho FONG, Richard Dale SWAIN
  • Publication number: 20090270655
    Abstract: A process for converting alkyl halides to alkyl alcohol alkoxylates is described. This is a direct alkoxylation because the alkyl alcohol alkoxylates are made without going through an alkyl alcohol intermediate. The process comprises direct alkoxylation coupling of alkyl halides with a nucleophilic material in the presence of a homogeneous catalyst system to produce alkyl alcohol alkoxylates, wherein the homogeneous catalyst system comprises at least one metal or metal compound which has the ability to form metal-halogen bonds. A process for converting alkanes (paraffins) to alkyl alcohol alkoxylates is also described.
    Type: Application
    Filed: March 24, 2006
    Publication date: October 29, 2009
    Inventors: Howard Lam-Ho Fong, Thomas Howard Johnson, Thomas Carl Semple
  • Publication number: 20090054274
    Abstract: A process by which alkyl halides may be reacted (coupled) with nucleophilic materials in the presence of a homogeneous catalyst system. The process comprises reacting (coupling) alkyl halides with a nucleophilic material in the presence of a homogeneous catalyst system to produce derivatives of alkyl halides, wherein the homogeneous catalyst system comprises at least one metal or metal compound which has the ability to form metal-halogen bonds.
    Type: Application
    Filed: March 24, 2006
    Publication date: February 26, 2009
    Inventors: Howard Lam-Ho Fong, Thomas Howard Johnson, Thomas Carl Semple
  • Publication number: 20090032437
    Abstract: A process for making primary haloalkanes by catalytic distillation of internal haloalkanes which comprises a) introducing an internal haloalkane feed into a catalytic distillation column; b) isomerizing at least a portion of the internal haloalkane feed in the presence of an internal haloalkane isomerization catalyst at a temperature at or above the boiling point of the internal haloalkanes and below the temperature and pressure at which hydrogen halide is formed to form primary haloalkanes; and removing the primary haloalkanes from the catalytic distillation column.
    Type: Application
    Filed: March 24, 2006
    Publication date: February 5, 2009
    Inventors: Howard Lam-Ho Fong, Brendan Dermot Murray, Thomas Carl Semple