Patents by Inventor Lance Boling

Lance Boling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140163659
    Abstract: A reinforced medical electrical lead for neurological applications has a reinforced construction for resisting the detachment of electrodes and lead connection terminals, thereby improving the robustness of the lead and extending the life of the lead by reducing the likelihood that a further surgical procedure will be required to remove the lead for repair or replacement thereof. The present reinforced lead construction maintains the integrity of the electrical connection between the conductor and the respective electrode and lead connection terminal by incorporating several reinforcing features in the lead construction in contrast to conventional lead constructions where it is possible to pull the electrodes and lead connection terminals away from their contact points with relatively little force.
    Type: Application
    Filed: February 14, 2014
    Publication date: June 12, 2014
    Applicant: NeuroPace, Inc.
    Inventor: C. Lance BOLING
  • Patent number: 8712552
    Abstract: The present application includes treatment systems having delivery-activated inflatable members, and associated systems and methods for treating the spinal cord and other tissues. A treatment system in accordance with one embodiment includes a lead body having an opening, an inner surface position around the opening, and an inflatable member carried by the lead body, with at least one of the inflatable member and the lead body including a frangible portion accessible from the opening. The inflatable member can have an expandable interior volume bounded at least in part by the frangible portion. The system can further include a delivery device received in the opening of the lead body and positioned to open a passage through the frangible portions between the interior volume of the inflatable member and the opening of the lead body when the delivery device is removed from the opening of the lead body.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: April 29, 2014
    Assignee: Nevro Corporation
    Inventors: C. Lance Boling, James Makous
  • Patent number: 8694130
    Abstract: A reinforced medical electrical lead for neurological applications has a reinforced construction for resisting the detachment of electrodes and lead connection terminals, thereby improving the robustness of the lead and extending the life of the lead by reducing the likelihood that a further surgical procedure will be required to remove the lead for repair or replacement thereof. The present reinforced lead construction maintains the integrity of the electrical connection between the conductor and the respective electrode and lead connection terminal by incorporating several reinforcing features in the lead construction in contrast to conventional lead constructions where it is possible to pull the electrodes and lead connection terminals away from their contact points with relatively little force.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: April 8, 2014
    Assignee: NeuroPace, Inc.
    Inventor: C. Lance Boling
  • Publication number: 20140048977
    Abstract: A method and apparatus for molding a medical device utilizes a rigid outer stiffener and a flexible inner mold that nests with the outer stiffener. The medical device can be a stimulating apparatus used to deliver electrical stimulation to a peripheral, central or autonomic neural structure. More specifically, the medical device can be a neurostimulator apparatus designed to delivery electrical stimulation to the sphenopalatine ganglion (SPG) to treat primary headaches, such as migraines, cluster headaches and/or many other neurological disorders, such as atypical facial pain and/or trigeminal neuralgias.
    Type: Application
    Filed: August 14, 2013
    Publication date: February 20, 2014
    Applicant: AUTONOMIC TECHNOLOGIES, INC.
    Inventors: Ryan Powell, Carl Lance Boling, Jennifer Teng, Morgan Clyburn
  • Publication number: 20130296993
    Abstract: An implantable medical device is provided for the suppression or prevention of pain, movement disorders, epilepsy, cerebrovascular diseases, autoimmune diseases, sleep disorders, autonomic disorders, abnormal metabolic states, disorders of the muscular system, and neuropsychiatric disorders in a patient. The implantable medical device can be a neurostimulator configured to be implanted on or near a cranial nerve to treat headache or other neurological disorders. One aspect of the implantable medical device is that it includes an electronics enclosure, a substrate integral to the electronics enclosure, and a monolithic feed-through integral to the electronics enclosure and the substrate. In some embodiments, the implantable medical device can include a fixation apparatus for attaching the device to a patient.
    Type: Application
    Filed: July 10, 2013
    Publication date: November 7, 2013
    Inventors: Carl Lance Boling, Benjamin David Pless, Ryan Powell, Anthony V. Caparso
  • Patent number: 8494641
    Abstract: An implantable medical device is provided for the suppression or prevention of pain, movement disorders, epilepsy, cerebrovascular diseases, autoimmune diseases, sleep disorders, autonomic disorders, abnormal metabolic states, disorders of the muscular system, and neuropsychiatric disorders in a patient. The implantable medical device can be a neurostimulator configured to be implanted on or near a cranial nerve to treat headache or other neurological disorders. One aspect of the implantable medical device is that it includes an electronics enclosure, a substrate integral to the electronics enclosure, and a monolithic feed-through integral to the electronics enclosure and the substrate. In some embodiments, the implantable medical device can include a fixation apparatus for attaching the device to a patient.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: July 23, 2013
    Assignee: Autonomic Technologies, Inc.
    Inventors: Carl Lance Boling, Benjamin David Pless, Ryan Powell, Anthony V. Caparso
  • Publication number: 20130178701
    Abstract: Methods and apparatus for delivering a neurostimulator to a target tissue are provided which may include any number of features. One feature is a delivery tool comprising a handle portion, an elongate shaft comprising a contoured distal portion, a visualization system embedded in the elongate shaft, and an insertion groove on the elongate shaft configured to deploy the neurostimulator. The contoured distal portion can be shaped and configured to maintain contact with a posterior maxilla and elevate a periosteum off of the posterior maxilla to avoid soft tissue dissection. In some embodiments, the neurostimulator is implanted in close proximity to or touching the sphenopalatine ganglion.
    Type: Application
    Filed: March 4, 2013
    Publication date: July 11, 2013
    Inventors: Benjamin David Pless, Carl Lance Boling, Anthony V. Caparso
  • Patent number: 8423156
    Abstract: Medical electrical lead systems and related methods are described. The lead systems may be configured to be at least partially implanted in neural tissue of a subject, such as a brain of a subject. Some variations of the lead systems may comprise a lead body, an electrode connected to the lead body, and a bioactive agent. The electrode and/or lead body may comprise a substrate, and the bioactive agent may be supported by the substrate (e.g., by a substantial portion of the area of the substrate). Methods described herein may comprise contacting the substrate of a lead body and/or an electrode of a medical electrical lead system with at least one bioactive agent, where the lead body and the electrode are connected to each other.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: April 16, 2013
    Assignee: NeuroPace, Inc.
    Inventors: C. Lance Boling, Daniel Chao, Martha J. Morrell, Benjamin D. Pless, Thomas K. Tcheng, Brett M. Wingeier
  • Patent number: 8412336
    Abstract: Methods and apparatus for delivering a neurostimulator to a target tissue are provided which may include any number of features. One feature is a delivery tool comprising a handle portion, an elongate shaft comprising a contoured distal portion, a visualization system embedded in the elongate shaft, and an insertion groove on the elongate shaft configured to deploy the neurostimulator. The contoured distal portion can be shaped and configured to maintain contact with a posterior maxilla and elevate a periosteum off of the posterior maxilla to avoid soft tissue dissection. In some embodiments, the neurostimulator is implanted in close proximity to or touching the sphenopalatine ganglion.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: April 2, 2013
    Assignee: Autonomic Technologies, Inc.
    Inventors: Benjamin David Pless, Carl Lance Boling, Anthony Caparso
  • Publication number: 20130073003
    Abstract: In some embodiments, the power generator for converting mechanical energy to electrical energy may include a compressible element adapted and configured to be placed in an environment having a variable compressive force such as varying ambient pressures. The compressible element may be compressed by a force applied by the variable pressure to the compressible element. The power generator may further include a transducer that may be coupled to the compressible element and that may convert mechanical energy from the compression of the compressible element to electrical energy. In some embodiments, the power generator may be adapted to be an implantable power generator for converting mechanical energy from a patient to electrical energy, such that the compressible element adapted and configured to be placed between two adjacent tissue layers of the patient and to be compressed by a force applied from the two adjacent tissue layers to the compressible element.
    Type: Application
    Filed: November 12, 2012
    Publication date: March 21, 2013
    Inventors: Benjamin David Pless, Carl Lance Boling, Barbara Gibb, Adolf van der Heide, Brett M. Wingeier
  • Patent number: 8326439
    Abstract: The present application includes treatment systems having delivery-activated inflatable members, and associated systems and methods for treating the spinal cord and other tissues. A treatment system in accordance with one embodiment includes a lead body having an opening, an inner surface position around the opening, and an inflatable member carried by the lead body, with at least one of the inflatable member and the lead body including a frangible portion accessible from the opening. The inflatable member can have an expandable interior volume bounded at least in part by the frangible portion. The system can further include a delivery device received in the opening of the lead body and positioned to open a passage through the frangible portions between the interior volume of the inflatable member and the opening of the lead body when the delivery device is removed from the opening of the lead body.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: December 4, 2012
    Assignee: Nevro Corporation
    Inventors: C. Lance Boling, James Makous
  • Publication number: 20120290057
    Abstract: One aspect of the present disclosure includes a neurostimulator delivery apparatus. The apparatus includes a handle portion, an elongate shaft extending from the handle portion, and a distal deployment portion. The distal deployment portion is configured to releasably mate with a neurostimulator. The neurostimulator is sized and configured for implantation into a craniofacial region of a subject.
    Type: Application
    Filed: May 21, 2012
    Publication date: November 15, 2012
    Inventors: Carl Lance Boling, Anthony V. Caparso, Ryan Powell, Jennifer Teng, Morgan Clyburn
  • Patent number: 8311632
    Abstract: In some embodiments, the power generator for converting mechanical energy to electrical energy is described may include a compressible element adapted and configured to be placed in an environment having a variable compressive force such as varying ambient pressures. The compressible element may be compressed by a force applied by the variable pressure to the compressible element. The power generator may further include a transducer that may be coupled to the compressible element and that may convert mechanical energy from the compression of the compressible element to electrical energy. In some embodiments, the power generator may be adapted to be an implantable power generator for converting mechanical energy from a patient to electrical energy, such that the compressible element adapted and configured to be placed between two adjacent tissue layers of the patient and to be compressed by a force applied from the two adjacent tissue layers to the compressible element.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: November 13, 2012
    Assignee: Autonomic Technologies, Inc.
    Inventors: Benjamin David Pless, Carl Lance Boling, Barbara Gibb, Adolf van der Heide, Brett M. Wingeier
  • Publication number: 20120277761
    Abstract: A surgical tool configured to facilitate delivery of a neurostimulator to a craniofacial region of a subject includes a handle portion, an elongate shaft having a contoured distal portion, and an insertion groove on the elongate shaft. The elongate shaft is configured to be advanced under a zygomatic bone along a maxillary tuberosity towards a pterygopalatine fossa. The distal portion includes a distal dissecting tip. The insertion groove is configured to receive, support, and guide a medical device or instrument.
    Type: Application
    Filed: May 14, 2012
    Publication date: November 1, 2012
    Inventors: Carl Lance Boling, Anthony V. Caparso, Francis A. Papay, Ryan Powell, Jennifer Teng, Morgan Clyburn
  • Publication number: 20120232628
    Abstract: Medical electrical lead systems and related methods are described. The lead systems may be configured to be at least partially implanted in neural tissue of a subject, such as a brain of a subject. Some variations of the lead systems may comprise a lead body, an electrode connected to the lead body, and a bioactive agent. The electrode and/or lead body may comprise a substrate, and the bioactive agent may be supported by the substrate (e.g., by a substantial portion of the area of the substrate). Methods described herein may comprise contacting the substrate of a lead body and/or an electrode of a medical electrical lead system with at least one bioactive agent, where the lead body and the electrode are connected to each other.
    Type: Application
    Filed: February 9, 2012
    Publication date: September 13, 2012
    Applicant: NeuroPace, Inc.
    Inventors: C. Lance Boling, Daniel Chao, Martha J. Morrell, Benjamin D. Pless, Thomas K. Tcheng, Brett M. Wingeier
  • Publication number: 20120209286
    Abstract: A surgical guide to facilitate delivery of a therapy delivery device into the pterygopalatine fossa of a subject includes a curvilinear body having a distal end portion, a proximal end portion, and an intermediate portion extending between the distal and proximal end portions. The proximal end portion is defined by oppositely disposed first and second surfaces. The proximal end portion and the intermediate portion define a longitudinal plane that extends between the proximal and distal end portions. The distal end portion has an arcuate configuration relative to the longitudinal plane and is defined by oppositely disposed third and fourth surfaces.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 16, 2012
    Inventors: Francis A. Papay, Carl Lance Boling
  • Publication number: 20120185026
    Abstract: Percutaneous leads with laterally displaceable sections, and associated systems and methods are disclosed. A device in accordance with a particular embodiment includes a lead body that in turn includes first, second and third percutaneous portions. The first portion can carry an electrical contact, the second portion can be spaced apart from the first portion, and the third portion can be positioned between the first and second portions along a deployment axis. The third portion can have a stiffness in a direction transverse to the deployment axis that is less than a stiffness of both the first and second portions transverse to the deployment axis, and a diameter that is less than corresponding diameters of the first and second portions.
    Type: Application
    Filed: January 31, 2012
    Publication date: July 19, 2012
    Applicant: Nevro Corporation
    Inventor: C. Lance Boling
  • Patent number: 8190270
    Abstract: Medical electrical lead systems and related methods are described. The medical electrical lead systems may be configured to be at least partially implanted in a body of a subject. Some variations of the medical electrical lead systems may comprise a lead body comprising a proximal end and a distal end and a lumen extending at least partially therebetween, at least one electrode in the proximity of the distal end of the lead body, and a reservoir in fluid communication with the lumen, where the reservoir is located at a position removed from the distal end of the lead body. Certain variations of the medical electrical lead systems may comprise a lead body comprising a proximal end and a distal end and first and second lumens extending at least partially therebetween, and at least one electrode in the proximity of the distal end of the lead body.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: May 29, 2012
    Assignee: NeuroPace, Inc.
    Inventors: Brett M. Wingeier, Martha Morrell, Carl Lance Boling
  • Publication number: 20120109253
    Abstract: Medical electrical lead systems and related methods are described. The medical electrical lead systems may be configured to be at least partially implanted in a body of a subject. Some variations of the medical electrical lead systems may comprise a lead body comprising a proximal end and a distal end and a lumen extending at least partially therebetween, at least one electrode in the proximity of the distal end of the lead body, and a reservoir in fluid communication with the lumen, where the reservoir is located at a position removed from the distal end of the lead body. Certain variations of the medical electrical lead systems may comprise a lead body comprising a proximal end and a distal end and first and second lumens extending at least partially therebetween, and at least one electrode in the proximity of the distal end of the lead body.
    Type: Application
    Filed: January 10, 2012
    Publication date: May 3, 2012
    Applicant: NEUROPACE, INC.
    Inventors: Brett M. Wingeier, Martha Morrell, C. Lance Boling
  • Patent number: 8160720
    Abstract: Medical electrical lead systems and related methods are described. The medical electrical lead systems may be configured to be at least partially implanted in a body of a subject. Some variations of the medical electrical lead systems may comprise a lead body comprising a proximal end and a distal end and a lumen extending at least partially therebetween, at least one electrode in the proximity of the distal end of the lead body, and a reservoir in fluid communication with the lumen, where the reservoir is located at a position removed from the distal end of the lead body. Certain variations of the medical electrical lead systems may comprise a lead body comprising a proximal end and a distal end and first and second lumens extending at least partially therebetween, and at least one electrode in the proximity of the distal end of the lead body.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: April 17, 2012
    Assignee: NeuroPace, Inc.
    Inventors: Brett M. Wingeier, Martha Morrell, Carl Lance Boling