Patents by Inventor Lance Scudder

Lance Scudder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240175119
    Abstract: Embodiments of the present disclosure relate generally to aerospace components containing protective coatings and methods for depositing the protective coatings. The protective coatings can be anti-coking coatings to reduce or suppress coke formation when the aerospace component is heated in the presence of a fuel in a reducing environment. In one or more embodiments, a method for depositing a protective coating on an aerospace component includes depositing a barrier layer on a surface of the aerospace component and depositing a carbon oxidation catalyst layer on the barrier layer. The barrier layer can be or include one or more metal oxides, such as chromium oxide, tungsten oxide, titanium oxide, vanadium oxide, alloys thereof, or any combination thereof. The carbon oxidation catalyst layer can be or include cerium oxide or doped cerium oxide or one or more oxygen storage materials.
    Type: Application
    Filed: November 29, 2022
    Publication date: May 30, 2024
    Inventors: Sukti CHATTERJEE, Yuriy MELNIK, Lance A. SCUDDER
  • Patent number: 11953390
    Abstract: Exemplary backpressure monitoring apparatuses may include a fluid supply source having a fluid port. The backpressure monitoring apparatuses may include a flow control mechanism fluidly coupled with the fluid port. The backpressure monitoring apparatuses may include a delivery tube fluidly coupled with the flow control mechanism and the fluid port. The backpressure monitoring apparatuses may include a pressure differential gauge fluidly coupled with the delivery tube. The pressure differential gauge may include an interface mechanism that is engageable with an outlet of a fluid flow device.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: April 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Sukti Chatterjee, David Masayuki Ishikawa, Yuriy V. Melnik, David A. Britz, Lance A. Scudder
  • Publication number: 20230313380
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on aerospace components and methods for depositing the protective coatings. In one or more embodiments, an aerospace component has a body containing a nickel superalloy, a metal oxide template layer disposed on the body, and an aluminum oxide layer disposed between the body of the aerospace component and the metal oxide template layer. The metal oxide template layer contains chromium oxide, chromium oxide hydroxide, or a combination thereof. The aluminum oxide layer contains ?-Al2O3. The metal oxide template layer and the aluminum oxide layer have a corundum crystal structure and have crystal structures with a lattice mismatch of about 0.1% to about 10%.
    Type: Application
    Filed: May 22, 2023
    Publication date: October 5, 2023
    Inventors: Sukti CHATTERJEE, Kenichi OHNO, Lance A. SCUDDER, Yuriy MELNIK, David A. BRITZ, Pravin K. NARWANKAR, Thomas KNISLEY, Mark SALY, Jeffrey ANTHIS
  • Patent number: 11739429
    Abstract: Methods for refurbishing aerospace components by removing corrosion and depositing protective coatings are provided herein. In one or more embodiments, a method of refurbishing an aerospace component includes exposing the aerospace component containing corrosion to an aqueous cleaning solution. The aerospace component contains a nickel superalloy, an aluminide layer disposed on the nickel superalloy, and an aluminum oxide layer disposed on the aluminide layer. The method includes removing the corrosion from a portion of the aluminum oxide layer with the aqueous cleaning solution to reveal the aluminum oxide layer, then exposing the aluminum oxide layer to a post-rinse, and forming a protective coating on the aluminum oxide layer.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: August 29, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Abhishek Mandal, Nitin Deepak, Neha Gupta, Prerna Sonthalia Goradia, Ankur Kadam, Kenichi Ohno, David Alexander Britz, Lance A. Scudder
  • Patent number: 11732353
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on an aerospace component and methods for depositing the protective coatings. In one or more embodiments, a method for depositing a coating on an aerospace component includes depositing one or more layers on a surface of the aerospace component using an atomic layer deposition or chemical vapor deposition process, and performing a partial oxidation and annealing process to convert the one or more layers to a coalesced layer having a preferred phase crystalline assembly. During oxidation cycles, an aluminum depleted region is formed at the surface of the aerospace component, and an aluminum oxide region is formed between the aluminum depleted region and the coalesced layer. The coalesced layer forms a protective coating, which decreases the rate of aluminum depletion from the aerospace component and the rate of new aluminum oxide scale formation.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: August 22, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Sukti Chatterjee, Lance A. Scudder, Yuriy Melnik, David A. Britz, Thomas Knisley, Kenichi Ohno, Pravin K. Narwankar
  • Patent number: 11697879
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on aerospace components and methods for depositing the protective coatings. In one or more embodiments, a method for producing a protective coating on an aerospace component includes depositing a metal oxide template layer on the aerospace component containing nickel and aluminum (e.g., nickel-aluminum superalloy) and heating the aerospace component containing the metal oxide template layer during a thermal process and/or an oxidation process. The thermal process and/or oxidation process includes diffusing aluminum contained within the aerospace component towards a surface of the aerospace component containing the metal oxide template layer, oxidizing the diffused aluminum to produce an aluminum oxide layer disposed between the aerospace component and the metal oxide template layer, and removing at least a portion of the metal oxide template layer while leaving the aluminum oxide layer.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: July 11, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Sukti Chatterjee, Kenichi Ohno, Lance A. Scudder, Yuriy Melnik, David A. Britz, Pravin K. Narwankar, Thomas Knisley, Mark Saly, Jeffrey Anthis
  • Publication number: 20230167546
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on an aerospace component and methods for depositing the protective coatings. In one or more embodiments, a method for depositing a coating on an aerospace component includes depositing one or more layers on a surface of the aerospace component using an atomic layer deposition or chemical vapor deposition process, and performing a partial oxidation and annealing process to convert the one or more layers to a coalesced layer having a preferred phase crystalline assembly. During oxidation cycles, an aluminum depleted region is formed at the surface of the aerospace component, and an aluminum oxide region is formed between the aluminum depleted region and the coalesced layer. The coalesced layer forms a protective coating, which decreases the rate of aluminum depletion from the aerospace component and the rate of new aluminum oxide scale formation.
    Type: Application
    Filed: January 25, 2023
    Publication date: June 1, 2023
    Inventors: Sukti CHATTERJEE, Lance A. SCUDDER, Yuriy MELNIK, David Alexander BRITZ, Thomas KNISLEY, Kenichi OHNO, Pravin K. NARWANKAR
  • Publication number: 20230168139
    Abstract: Exemplary backpressure monitoring apparatuses may include a fluid supply source having a fluid port. The backpressure monitoring apparatuses may include a flow control mechanism fluidly coupled with the fluid port. The backpressure monitoring apparatuses may include a delivery tube fluidly coupled with the flow control mechanism and the fluid port. The backpressure monitoring apparatuses may include a pressure differential gauge fluidly coupled with the delivery tube. The pressure differential gauge may include an interface mechanism that is engageable with an outlet of a fluid flow device.
    Type: Application
    Filed: November 30, 2021
    Publication date: June 1, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Sukti Chatterjee, David Masayuki Ishikawa, Yuriy V. Melnik, David A. Britz, Lance A. Scudder
  • Patent number: 11598000
    Abstract: Methods of removing native oxide layers and depositing dielectric layers having a controlled number of active sites on MEMS devices for biological applications are disclosed. In one aspect, a method includes removing a native oxide layer from a surface of the substrate by exposing the substrate to one or more ligands in vapor phase to volatize the native oxide layer and then thermally desorbing or otherwise etching the volatized native oxide layer. In another aspect, a method includes depositing a dielectric layer selected to provide a controlled number of active sites on the surface of the substrate. In yet another aspect, a method includes both removing a native oxide layer from a surface of the substrate by exposing the substrate to one or more ligands and depositing a dielectric layer selected to provide a controlled number of active sites on the surface of the substrate.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: March 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Ranga Rao Arnepalli, Colin Costano Neikirk, Yuriy Melnik, Suresh Chand Seth, Pravin K. Narwankar, Sukti Chatterjee, Lance A. Scudder
  • Publication number: 20230050169
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on various substrates including aerospace components and methods for depositing the protective coatings. In one or more embodiments, an aerospace component has a protective coating containing an aluminum oxide layer disposed on a surface of the aerospace component, a metal-containing catalytic layer disposed on the aluminum oxide layer, and a boron nitride layer disposed on the metal-containing catalytic layer. The aerospace component contains a superalloy having at least nickel and aluminum. In some examples, the aerospace component is a turbine blade, a turbine vane, a support member, a frame, a rib, a fin, a pin fin, a fuel nozzle, a combustor liner, a combustor shield, a heat exchanger, a fuel line, a fuel valve, an internal cooling channel, or any combination thereof.
    Type: Application
    Filed: October 31, 2022
    Publication date: February 16, 2023
    Inventors: David Alexander BRITZ, Lance A. SCUDDER, Yuriy MELNIK, Sukti CHATTERJEE
  • Patent number: 11560804
    Abstract: Methods for forming protective coatings on aerospace components are provided. In one or more embodiments, the method includes exposing an aerospace component to a first precursor and a first reactant to form a first deposited layer on a surface of the aerospace component by a first deposition process (e.g., CVD or ALD), and exposing the aerospace component to a second precursor and a second reactant to form a second deposited layer on the first deposited layer by a second deposition process. The first deposited layer and the second deposited layer have different compositions from each other. The method also includes repeating the first deposition process and the second deposition process to form a nanolaminate film stack having from 2 pairs to about 1,000 pairs of the first deposited layer and the second deposited layer consecutively deposited on each other.
    Type: Grant
    Filed: June 3, 2022
    Date of Patent: January 24, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yuriy Melnik, Sukti Chatterjee, Kaushal Gangakhedkar, Jonathan Frankel, Lance A. Scudder, Pravin K. Narwankar, David Alexander Britz, Thomas Knisley, Mark Saly, David Thompson
  • Publication number: 20230002897
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on substrates and methods for depositing the protective coatings. In one or more embodiments, a method of forming a protective coating on a substrate includes depositing a chromium oxide layer containing amorphous chromium oxide on a surface of the substrate during a first vapor deposition process and heating the substrate containing the chromium oxide layer comprising the amorphous chromium oxide to convert at least a portion of the amorphous chromium oxide to crystalline chromium oxide during a first annealing process. The method also includes depositing an aluminum oxide layer containing amorphous aluminum oxide on the chromium oxide layer during a second vapor deposition process and heating the substrate containing the aluminum oxide layer disposed on the chromium oxide layer to convert at least a portion of the amorphous aluminum oxide to crystalline aluminum oxide during a second annealing process.
    Type: Application
    Filed: September 7, 2022
    Publication date: January 5, 2023
    Inventors: Kenichi OHNO, Eric H. LIU, Sukti CHATTERJEE, Yuriy MELNIK, Thomas KNISLEY, David Alexander BRITZ, Lance A. SCUDDER, Pravin K. NARWANKAR
  • Patent number: 11519066
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on various substrates including aerospace components and methods for depositing the protective coatings. In one or more embodiments, a method of forming a protective coating on an aerospace component includes forming an aluminum oxide layer on a surface of the aerospace component and depositing a boron nitride layer on or over the aluminum oxide layer during a vapor deposition process. In some examples, the method includes depositing a metal-containing catalytic layer on the aluminum oxide layer before depositing the boron nitride layer. The boron nitride layer can include hexagonal boron nitride (hBN).
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: December 6, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: David Alexander Britz, Lance A. Scudder, Yuriy Melnik, Sukti Chatterjee
  • Publication number: 20220372620
    Abstract: Exemplary methods of forming a coating of material on a substrate may include forming a plasma of a first precursor and an oxygen-containing precursor. The first precursor and the oxygen-containing precursor may be provided in a first flow rate ratio. The methods may include depositing a first layer of material on the substrate. While maintaining the plasma, the methods may include adjusting the first flow rate ratio to a second flow rate ratio. The methods may include depositing a second layer of material on the substrate.
    Type: Application
    Filed: May 10, 2022
    Publication date: November 24, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Lance A. Scudder, Sukti Chatterjee, David Masayuki Ishikawa, Yuriy V. Melnik, Vibhas Singh
  • Publication number: 20220375723
    Abstract: Exemplary methods of forming a coating of material on a substrate may include forming a plasma of a first precursor and an oxygen-containing precursor. The first precursor and the oxygen-containing precursor may be provided in a first flow rate ratio. The methods may include depositing a first layer of material on the substrate. While maintaining the plasma, the methods may include adjusting the first flow rate ratio to a second flow rate ratio. The methods may include depositing a second layer of material on the substrate.
    Type: Application
    Filed: May 10, 2022
    Publication date: November 24, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Lance A. Scudder, Sukti Chatterjee, David Masayuki Ishikawa, Yuriy V. Melnik, Vibhas Singh
  • Patent number: 11466364
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on substrates and methods for depositing the protective coatings. In one or more embodiments, a method of forming a protective coating on a substrate includes depositing a chromium oxide layer containing amorphous chromium oxide on a surface of the substrate during a first vapor deposition process and heating the substrate containing the chromium oxide layer comprising the amorphous chromium oxide to convert at least a portion of the amorphous chromium oxide to crystalline chromium oxide during a first annealing process. The method also includes depositing an aluminum oxide layer containing amorphous aluminum oxide on the chromium oxide layer during a second vapor deposition process and heating the substrate containing the aluminum oxide layer disposed on the chromium oxide layer to convert at least a portion of the amorphous aluminum oxide to crystalline aluminum oxide during a second annealing process.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: October 11, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kenichi Ohno, Eric H. Liu, Sukti Chatterjee, Yuriy Melnik, Thomas Knisley, David Alexander Britz, Lance A. Scudder, Pravin K. Narwankar
  • Publication number: 20220298920
    Abstract: Methods for forming protective coatings on aerospace components are provided. In one or more embodiments, the method includes exposing an aerospace component to a first precursor and a first reactant to form a first deposited layer on a surface of the aerospace component by a first deposition process (e.g., CVD or ALD), and exposing the aerospace component to a second precursor and a second reactant to form a second deposited layer on the first deposited layer by a second deposition process. The first deposited layer and the second deposited layer have different compositions from each other. The method also includes repeating the first deposition process and the second deposition process to form a nanolaminate film stack having from 2 pairs to about 1,000 pairs of the first deposited layer and the second deposited layer consecutively deposited on each other.
    Type: Application
    Filed: June 3, 2022
    Publication date: September 22, 2022
    Inventors: Yuriy MELNIK, Sukti CHATTERJEE, Kaushal GANGAKHEDKAR, Jonathan FRANKEL, Lance A. SCUDDER, Pravin K. NARWANKAR, David Alexander BRITZ, Thomas KNISLEY, Mark SALY, David THOMPSON
  • Patent number: 11384648
    Abstract: Protective coatings on an aerospace component are provided. An aerospace component includes a surface containing nickel, nickel superalloy, aluminum, chromium, iron, titanium, hafnium, alloys thereof, or any combination thereof, and a coating disposed on the surface, where the coating contains a nanolaminate film stack having two or more pairs of a first deposited layer and a second deposited layer. The first deposited layer contains chromium oxide, chromium nitride, aluminum oxide, aluminum nitride, or any combination thereof, the second deposited layer contains aluminum oxide, aluminum nitride, silicon oxide, silicon nitride, silicon carbide, yttrium oxide, yttrium nitride, yttrium silicon nitride, hafnium oxide, hafnium nitride, hafnium silicide, hafnium silicate, titanium oxide, titanium nitride, titanium silicide, titanium silicate, or any combination thereof, and the first deposited layer and the second deposited layer have different compositions from each other.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: July 12, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yuriy Melnik, Sukti Chatterjee, Kaushal Gangakhedkar, Jonathan Frankel, Lance A. Scudder, Pravin K. Narwankar, David Alexander Britz, Thomas Knisley, Mark Saly, David Thompson
  • Patent number: 11378511
    Abstract: A method for detecting corrosion on a conductive object includes submerging a surface of the conductive object at least partially in an aqueous solution, flowing current through the surface of the conductive object by forming a voltage differential across the surface, varying the voltage differential across the surface while monitoring the current through the surface of the conductive object, determining a total charge corresponding to a corrosion level of the surface of the conductive object based on current versus voltage levels. The corrosion level may further be utilized in selecting a cleaning process to remediate the corrosion of the surface based on the corrosion level and in applying a protective corrosion barrier to on at least part of the surface after the cleaning process.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: July 5, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Gang Grant Peng, Robert Douglas Mikkola, David Britz, Lance Scudder, David W. Groechel
  • Patent number: 11355317
    Abstract: Plasma is generated in a semiconductor process chamber by a plurality of microwave inputs with slow or fast rotation. Radial uniformity of the plasma is controlled by regulating the power ratio of a center-high mode and an edge-high mode of the plurality of microwave inputs into a microwave cavity. The radial uniformity of the generated plasma in a plasma chamber is attained by adjusting the power ratio for the two modes without inputting time-splitting parameters for each mode.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: June 7, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Satoru Kobayashi, Lance Scudder, David Britz, Soonam Park, Dmitry Lubomirsky, Hideo Sugai