Patents by Inventor Lance Scudder

Lance Scudder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220154335
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on aerospace components and methods for depositing the protective coatings. In one or more embodiments, an aerospace component containing a protective coating is provided and contains a superalloy substrate and a bond coating disposed on the superalloy substrate. The protective coating also contains a thermal barrier coating containing yttria-stabilized zirconia disposed on the bond coating, an oxide coating disposed on the thermal barrier coating, and an optional capping layer disposed on the oxide coating. The oxide coating contains a film stack containing two or more pairs of a first film and a second film, where the first film contains a first metal oxide and the second film contains a second metal oxide, and the first metal oxide has a different composition than the second metal oxide. The capping layer contains aluminum oxide, calcium oxide, magnesium oxide, or any combination thereof.
    Type: Application
    Filed: November 18, 2020
    Publication date: May 19, 2022
    Inventors: Sukti CHATTERJEE, David Alexander BRITZ, Lance A. SCUDDER
  • Publication number: 20220081763
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on turbocharger components, such as turbine wheels and compressor wheels, and other rotary equipment components and methods for depositing the protective coatings on such components. In one or more embodiments, a coated turbocharger component is provided and includes a metallic substrate containing a nickel-based alloy or superalloy, a cobalt-based alloy or superalloy, a stainless steel, or a titanium-aluminum alloy and a protective coating disposed on the metallic substrate. The protective coating contains an aluminum oxide having a purity of greater than 99 atomic percent (at %). In some examples, the metallic substrate is a turbine wheel, a compressor wheel, an impeller, a fan blade, a disk, a heat shield, a pulley, or a shaft.
    Type: Application
    Filed: September 16, 2021
    Publication date: March 17, 2022
    Inventors: Nitin DEEPAK, Sarin Sundar JAINNAGAR KUPPUSWAMY, Sankalp PATIL, Sukti CHATTERJEE, David Masayuki ISHIKAWA, Prerna Sonthalia GORADIA, David Alexander BRITZ, Lance A. SCUDDER
  • Publication number: 20220055772
    Abstract: Embodiments of the present disclosure generally relate to methods for cleaning aerospace components having oxidation, corrosion, contaminants, and/or other degradations. In one or more embodiments, a cleaning method includes positioning the aerospace component into a processing region of a processing chamber, introducing hydrogen gas into the processing region, maintaining the processing region at a pressure of about 100 mTorr to about 5,000 mTorr, and heating the aerospace component at a temperature of about 500° C. to about 1,200° C. for about 0.5 hours to about 24 hours to produce a cleaned surface on the aerospace component. In other embodiments, a cleaning method includes exposing the aerospace component to ozone while maintaining the aerospace component at a temperature of about 15° C. to about 500° C. for 0.25 hours to about 24 hours to produce a cleaned surface on the aerospace component.
    Type: Application
    Filed: August 17, 2021
    Publication date: February 24, 2022
    Inventors: Sukti CHATTERJEE, Lance A. SCUDDER, Yuriy MELNIK, Kenichi OHNO, Eric H. LIU, David Alexander BRITZ
  • Publication number: 20220050051
    Abstract: Embodiments of the present disclosure generally relate to methods for detecting end-points of cleaning processes for aerospace components containing corrosion. The method includes exposing the aerospace component to a first solvent, exposing the aerospace component to a first water rinse, and analyzing a first aliquot of the first water rinse by absorbance spectroscopy to determine an intermediate solute concentration in the first aliquot, where the intermediate solute concentration is greater than a reference solute concentration.
    Type: Application
    Filed: August 12, 2021
    Publication date: February 17, 2022
    Inventors: Abhishek MANDAL, Lance A. SCUDDER, David Alexander BRITZ, Kenichi OHNO, Nitin DEEPAK, Prerna Sonthalia GORADIA, Ankur KADAM
  • Publication number: 20220002883
    Abstract: Embodiments of the present disclosure generally relate to methods for refurbishing aerospace components by removing corrosion and depositing protective coatings. In one or more embodiments, a method of refurbishing an aerospace component includes exposing the aerospace component containing corrosion to an aqueous cleaning solution. The aerospace component contains a nickel superalloy, an aluminide layer disposed on the nickel superalloy, and an aluminum oxide layer disposed on the aluminide layer. The method includes removing the corrosion from a portion of the aluminum oxide layer with the aqueous cleaning solution to reveal the aluminum oxide layer, then exposing the aluminum oxide layer to a post-rinse, and forming a protective coating on the aluminum oxide layer.
    Type: Application
    Filed: June 4, 2021
    Publication date: January 6, 2022
    Inventors: Abhishek MANDAL, Nitin DEEPAK, Neha GUPTA, Prerna Sonthalia GORADIA, Ankur KADAM, Kenichi OHNO, David Alexander BRITZ, Lance A. SCUDDER
  • Publication number: 20210381386
    Abstract: Embodiments of the present disclosure generally relate to oxide layer compositions for turbine engine components and methods for depositing the oxide layer compositions. In one or more embodiments, a turbine engine component includes a superalloy substrate and a bond coat disposed over the superalloy substrate. The turbine engine component includes an oxide layer disposed over the bond coat, where the oxide layer includes aluminum oxide and a metal dopant. The turbine engine component includes a thermal barrier coating disposed over the oxide layer.
    Type: Application
    Filed: June 9, 2020
    Publication date: December 9, 2021
    Inventors: Nitin DEEPAK, Sarin Sundar JAINNAGAR KUPPUSWAMY, Prerna Sonthalia GORADIA, Sukti CHATTERJEE, Lance A. SCUDDER, Kenichi OHNO, Yuriy MELNIK, David Alexander BRITZ, Sankalp PATIL, Ankur KADAM, Abhishek MANDAL
  • Publication number: 20210363630
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on various substrates including aerospace components and methods for depositing the protective coatings. In one or more embodiments, a method of forming a protective coating on an aerospace component includes forming an aluminum oxide layer on a surface of the aerospace component and depositing a boron nitride layer on or over the aluminum oxide layer during a vapor deposition process. In some examples, the method includes depositing a metal-containing catalytic layer on the aluminum oxide layer before depositing the boron nitride layer. The boron nitride layer can include hexagonal boron nitride (hBN).
    Type: Application
    Filed: July 6, 2020
    Publication date: November 25, 2021
    Inventors: David Alexander BRITZ, Lance A. SCUDDER, Yuriy MELNIK, Sukti CHATTERJEE
  • Publication number: 20210156789
    Abstract: A method for detecting corrosion on a conductive object includes submerging a surface of the conductive object at least partially in an aqueous solution, flowing current through the surface of the conductive object by forming a voltage differential across the surface, varying the voltage differential across the surface while monitoring the current through the surface of the conductive object, determining a total charge corresponding to a corrosion level of the surface of the conductive object based on current versus voltage levels. The corrosion level may further be utilized in selecting a cleaning process to remediate the corrosion of the surface based on the corrosion level and in applying a protective corrosion barrier to on at least part of the surface after the cleaning process.
    Type: Application
    Filed: November 21, 2019
    Publication date: May 27, 2021
    Inventors: Gang Grant PENG, Robert Douglas MIKKOLA, David BRITZ, Lance SCUDDER, David W. GROECHEL
  • Publication number: 20210156267
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on turbine blades, turbine disks, and other aerospace components and methods for depositing the protective coatings. In one or more embodiments, a turbine blade includes a blade portion and a root coupled to the blade portion, where the root contains a protective coating disposed thereon. The protective coating is or contains one or more deposited crystalline film containing at least one of a metal oxide, a metal nitride, or a metal oxynitride and has a thickness of about 100 nm to about 10 ?m. In some examples, a turbine blade assembly includes a disk and a plurality of the turbine blades coupled to the disk. The protective coating is disposed on the root on the turbine blade and/or a receiving surface on the turbine disk.
    Type: Application
    Filed: March 17, 2020
    Publication date: May 27, 2021
    Inventors: Sukti CHATTERJEE, Lance A. SCUDDER, David Alexander BRITZ, Kenichi OHNO
  • Publication number: 20210074539
    Abstract: Methods and apparatus provide plasma generation for semiconductor process chambers. In some embodiments, the plasma is generated by a system that may comprise a process chamber having at least two upper microwave cavities separated from a lower microwave cavity by a metallic plate with a plurality of radiation slots, at least one microwave input port connected to a first one of the at least two upper microwave cavities, at least two microwave input ports connected to a second one of the at least two upper microwave cavities, and the lower microwave cavity receives radiation through the plurality of radiation slots in the metallic plate from both of the at least two upper microwave cavities, the lower microwave cavity is configured to form an electric field that provides uniform plasma distribution in a process volume of the process chamber.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 11, 2021
    Inventors: Satoru Kobayashi, Hideo Sugai, Denis Ivanov, Lance Scudder, Dmitry Lubomirsky
  • Publication number: 20210071299
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on substrates and methods for depositing the protective coatings. In one or more embodiments, a method of forming a protective coating on a substrate includes depositing a chromium oxide layer containing amorphous chromium oxide on a surface of the substrate during a first vapor deposition process and heating the substrate containing the chromium oxide layer comprising the amorphous chromium oxide to convert at least a portion of the amorphous chromium oxide to crystalline chromium oxide during a first annealing process. The method also includes depositing an aluminum oxide layer containing amorphous aluminum oxide on the chromium oxide layer during a second vapor deposition process and heating the substrate containing the aluminum oxide layer disposed on the chromium oxide layer to convert at least a portion of the amorphous aluminum oxide to crystalline aluminum oxide during a second annealing process.
    Type: Application
    Filed: October 31, 2019
    Publication date: March 11, 2021
    Inventors: Kenichi OHNO, Eric H. LIU, Sukti CHATTERJEE, Yuriy MELNIK, Thomas KNISLEY, David Alexander BRITZ, Lance A. SCUDDER, Pravin K. NARWANKAR
  • Publication number: 20200392626
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on aerospace components and methods for depositing the protective coatings. In one or more embodiments, a method for producing a protective coating on an aerospace component includes depositing a metal oxide template layer on the aerospace component containing nickel and aluminum (e.g., nickel-aluminum superalloy) and heating the aerospace component containing the metal oxide template layer during a thermal process and/or an oxidation process. The thermal process and/or oxidation process includes diffusing aluminum contained within the aerospace component towards a surface of the aerospace component containing the metal oxide template layer, oxidizing the diffused aluminum to produce an aluminum oxide layer disposed between the aerospace component and the metal oxide template layer, and removing at least a portion of the metal oxide template layer while leaving the aluminum oxide layer.
    Type: Application
    Filed: September 4, 2019
    Publication date: December 17, 2020
    Inventors: Sukti CHATTERJEE, Kenichi OHNO, Lance A. SCUDDER, Yuriy MELNIK, David A. BRITZ, Pravin K. NARWANKAR, Thomas KNISLEY, Mark SALY, Jeffrey ANTHIS
  • Publication number: 20200340107
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on an aerospace component and methods for depositing the protective coatings. In one or more embodiments, a method for depositing a coating on an aerospace component includes depositing one or more layers on a surface of the aerospace component using an atomic layer deposition or chemical vapor deposition process, and performing a partial oxidation and annealing process to convert the one or more layers to a coalesced layer having a preferred phase crystalline assembly. During oxidation cycles, an aluminum depleted region is formed at the surface of the aerospace component, and an aluminum oxide region is formed between the aluminum depleted region and the coalesced layer. The coalesced layer forms a protective coating, which decreases the rate of aluminum depletion from the aerospace component and the rate of new aluminum oxide scale formation.
    Type: Application
    Filed: April 16, 2020
    Publication date: October 29, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Sukti CHATTERJEE, Lance A. SCUDDER, Yuriy MELNIK, David A. BRITZ, Thomas KNISLEY, Kenichi OHNO, Pravin K. NARWANKAR
  • Publication number: 20200240018
    Abstract: Protective coatings on an aerospace component are provided. An aerospace component includes a surface containing nickel, nickel superalloy, aluminum, chromium, iron, titanium, hafnium, alloys thereof, or any combination thereof, and a coating disposed on the surface, where the coating contains a nanolaminate film stack having two or more pairs of a first deposited layer and a second deposited layer. The first deposited layer contains chromium oxide, chromium nitride, aluminum oxide, aluminum nitride, or any combination thereof, the second deposited layer contains aluminum oxide, aluminum nitride, silicon oxide, silicon nitride, silicon carbide, yttrium oxide, yttrium nitride, yttrium silicon nitride, hafnium oxide, hafnium nitride, hafnium silicide, hafnium silicate, titanium oxide, titanium nitride, titanium silicide, titanium silicate, or any combination thereof, and the first deposited layer and the second deposited layer have different compositions from each other.
    Type: Application
    Filed: April 8, 2020
    Publication date: July 30, 2020
    Inventors: Yuriy MELNIK, Sukti CHATTERJEE, Kaushal GANGAKHEDKAR, Jonathan FRANKEL, Lance A. SCUDDER, Pravin K. NARWANKAR, David Alexander BRITZ, Thomas KNISLEY, Mark SALY, David THOMPSON
  • Patent number: 10633740
    Abstract: Protective coatings on an aerospace component and methods for depositing the protective coatings are provided. A method for depositing a coating on an aerospace component includes exposing an aerospace component to a first precursor and a first reactant to form a first deposited layer on a surface of the aerospace component by a chemical vapor deposition (CVD) process or a first atomic layer deposition (ALD) process and exposing the aerospace component to a second precursor and a second reactant to form a second deposited layer on the first deposited layer by a second ALD process, where the first deposited layer and the second deposited layer have different compositions from each other.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: April 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yuriy Melnik, Sukti Chatterjee, Kaushal Gangakhedkar, Jonathan Frankel, Lance A. Scudder, Pravin K. Narwankar, David Alexander Britz, Thomas Knisley, Mark Saly, David Thompson
  • Publication number: 20190284686
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on an aerospace component and methods for depositing the protective coatings. In one or more embodiments, a method for depositing a coating on an aerospace component includes exposing an aerospace component to a first precursor and a first reactant to form a first deposited layer on a surface of the aerospace component by a chemical vapor deposition (CVD) process or a first atomic layer deposition (ALD) process and exposing the aerospace component to a second precursor and a second reactant to form a second deposited layer on the first deposited layer by a second ALD process, where the first deposited layer and the second deposited layer have different compositions from each other.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 19, 2019
    Inventors: Yuriy MELNIK, Sukti CHATTERJEE, Kaushal GANGAKHEDKAR, Jonathan FRANKEL, Lance A. SCUDDER, Pravin K. NARWANKAR, David Alexander BRITZ, Thomas KNISLEY, Mark SALY, David THOMPSON
  • Publication number: 20190284692
    Abstract: A gas distribution assembly for applying a coating on an interior of a plurality of components includes a support with a plurality of component cavities formed within the support. Each component cavity corresponds to a respective component to fluidly couple with an interior of the respective component. A first gas source flow line is fluidly coupled with each of the component cavities to provide a first gas from a first gas source to each of the component cavities, and a second gas source flow line is fluidly coupled with each of the component cavities to provide a second gas from a second gas source to each of the component cavities.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 19, 2019
    Inventors: Yuriy MELNIK, Sukti CHATTERJEE, Kaushal GANGAKHEDKAR, Jonathan FRANKEL, Lance A. SCUDDER, Pravin K. NARWANKAR, David Alexander BRITZ, David Masayuki ISHIKAWA
  • Publication number: 20190189399
    Abstract: Plasma is generated in a semiconductor process chamber by a plurality of microwave inputs with slow or fast rotation. Radial uniformity of the plasma is controlled by regulating the power ratio of a center-high mode and an edge-high mode of the plurality of microwave inputs into a microwave cavity. The radial uniformity of the generated plasma in a plasma chamber is attained by adjusting the power ratio for the two modes without inputting time-splitting parameters for each mode.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 20, 2019
    Inventors: SATORU KOBAYASHI, LANCE SCUDDER, DAVID BRITZ, SOONAM PARK, DMITRY LUBOMIRSKY, HIDEO SUGAI
  • Publication number: 20190119810
    Abstract: Methods of removing native oxide layers and depositing dielectric layers having a controlled number of active sites on MEMS devices for biological applications are disclosed. In one aspect, a method includes removing a native oxide layer from a surface of the substrate by exposing the substrate to one or more ligands in vapor phase to volatize the native oxide layer and then thermally desorbing or otherwise etching the volatized native oxide layer. In another aspect, a method includes depositing a dielectric layer selected to provide a controlled number of active sites on the surface of the substrate. In yet another aspect, a method includes both removing a native oxide layer from a surface of the substrate by exposing the substrate to one or more ligands and depositing a dielectric layer selected to provide a controlled number of active sites on the surface of the substrate.
    Type: Application
    Filed: September 21, 2018
    Publication date: April 25, 2019
    Inventors: Ranga Rao ARNEPALLI, Colin Costano NEIKIRK, Yuriy MELNIK, Suresh Chand SETH, Pravin K. NARWANKAR, Sukti CHATTERJEE, Lance A. SCUDDER
  • Patent number: 10217838
    Abstract: A semiconductor structure includes first, second, and third transistor elements each having a first screening region concurrently formed therein. A second screening region is formed in the second and third transistor elements such that there is at least one characteristic of the screening region in the second transistor element that is different than the second screening region in the third transistor element. Different characteristics include doping concentration and depth of implant. In addition, a different characteristic may be achieved by concurrently implanting the second screening region in the second and third transistor element followed by implanting an additional dopant into the second screening region of the third transistor element.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: February 26, 2019
    Assignee: MIE FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Dalong Zhao, Teymur Bakhishev, Lance Scudder, Paul E. Gregory, Michael Duane, U. C. Sridharan, Pushkar Ranade, Lucian Shifren, Thomas Hoffmann