Patents by Inventor Lane Martin

Lane Martin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200284906
    Abstract: A lidar system includes one or more light sources configured to generate a first beam of light and a second beam of light, a scanner configured to scan the first and second beams of light across a field of regard of the lidar system, and a receiver configured to detect the first beam of light and the second beam of light scattered by one or more remote targets. The scanner includes a rotatable polygon mirror that includes multiple reflective surfaces angularly offset from one another along a periphery of the polygon mirror, the reflective surfaces configured to reflect the first and second beams of light to produce a series of scan lines as the polygon mirror rotates. The scanner also includes a pivotable scan mirror configured to (i) reflect the first and second beams of light and (ii) pivot to distribute the scan lines across the field of regard.
    Type: Application
    Filed: May 20, 2020
    Publication date: September 10, 2020
    Inventors: Jason M. Eichenholz, Scott R. Campbell, John E. McWhirter, Matthew D. Weed, Lane A. Martin
  • Publication number: 20200256964
    Abstract: A lidar system includes a light source, a scanner, and a receiver and is configured to detect remote targets located up to RMAX meters away. The receiver includes a detector with a field of view larger than the light-source field of view. The scanner causes the detector field of view to move relative to the instantaneous light-source field of view along the scan direction, so that (i) when a pulse of light is emitted, the instantaneous light-source field of view is approximately centered within the detector field of view, and (ii) when a scattered pulse of light returns from a target located RMAX meters away, the instantaneous light-source field of view is located near an edge of the field of view of the detector and is contained within the field of view of the detector.
    Type: Application
    Filed: April 29, 2020
    Publication date: August 13, 2020
    Inventors: Scott R. Campbell, Lane A. Martin, Matthew D. Weed, Jason M. Eichenholz
  • Patent number: 10641874
    Abstract: A lidar system includes a light source, a scanner, and a receiver and is configured to detect remote targets located up to RMAX meters away. The receiver includes a detector with a field of view larger than the light-source field of view. The scanner causes the detector field of view to move relative to the instantaneous light-source field of view along the scan direction, so that (i) when a pulse of light is emitted, the instantaneous light-source field of view is approximately centered within the detector field of view, and (ii) when a scattered pulse of light returns from a target located RMAX meters away, the instantaneous light-source field of view is located near an edge of the field of view of the detector and is contained within the field of view of the detector.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: May 5, 2020
    Assignee: Luminar Technologies, Inc.
    Inventors: Scott R. Campbell, Lane A. Martin, Matthew D. Weed, Jason M. Eichenholz
  • Patent number: 10557940
    Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan at least a portion of the emitted pulses of light across a field of regard. The lidar system also includes a receiver configured to detect at least a portion of the scanned pulses of light scattered by a target located a distance from the lidar system.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: February 11, 2020
    Assignee: Luminar Technologies, Inc.
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin, Stephen D. Gaalema
  • Patent number: 10488496
    Abstract: A lidar system can include a light source that emits a pulse of light and a splitter that splits the pulse of light into two or more pulses of angularly separated light. The lidar system can also include a scanner configured to scan pulses of light along a scanning direction across a plurality of pixels located downrange from the lidar system. The lidar system can also include a detector array with a first detector and a second detector. The first and second detectors can be separated by a detector-separation distance along a direction corresponding to the scanning direction of the light pulses. The first detector can be configured to detect scattered light from the first pulse of light and the second detector can be configured to detect scattered light from the second pulse of light.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: November 26, 2019
    Assignee: Luminar Technologies, Inc.
    Inventors: Scott R. Campbell, Jason M. Eichenholz, Lane A. Martin, Matthew D. Weed
  • Patent number: 10489144
    Abstract: Arrangements for automatically implementing bucket policy management making it automatic that all affected members are always completely and consistently informed of changes to a policy code as they occur, and making it automatic that a complete and accurate historical record is maintained regarding all policy code changes as they occur over time.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: November 26, 2019
    Assignee: Capital One Services, LLC
    Inventors: Rexwell Minnis, Lane Martin, Warner Emdee
  • Patent number: 10418776
    Abstract: A lidar system can include a solid-state laser to emit pulses of light. The solid-state laser can include a Q-switched laser having a gain medium and a Q-switch. The lidar system can also include a scanner configured to scan the emitted pulses of light across a field of regard and a receiver configured to detect at least a portion of the scanned pulses of light scattered by a target located a distance from the lidar system. The lidar system can also include a processor configured to determine the distance from the lidar system to the target based at least in part on a round-trip time of flight for an emitted pulse of light to travel from the lidar system to the target and back to the lidar system.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: September 17, 2019
    Assignee: Luminar Technologies, Inc.
    Inventors: David Welford, Martin A. Jaspan, Jason M. Eichenholz, Scott R. Campbell, Lane A. Martin, Matthew D. Weed
  • Patent number: 10401481
    Abstract: A lidar system includes a light source configured to emit light, a scanner configured to scan a field of regard of the lidar system using (i) a first output beam that includes at least a portion of the emitted light and has a first amount of power and (ii) a second output beam that includes at least a portion of the emitted light and has a second amount of power different from the first amount of power, with an angular separation between the first output beam and the second output beam along a vertical dimension of the field of regard, and a receiver configured to detect light associated with the first output beam and light associated with the second output beam scattered by one or more remote targets.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: September 3, 2019
    Assignee: Luminar Technologies, Inc.
    Inventors: Scott R. Campbell, Matthew D. Weed, Lane A. Martin, Jason M. Eichenholz
  • Publication number: 20190250254
    Abstract: A system includes a first lidar sensor and a second lidar sensor, where each lidar sensor includes a scanner configured to direct a set of pulses of light along a scan pattern and a receiver configured to detect scattered light from the set of light pulses. The scan patterns are at least partially overlapped in an overlap region. The system further includes an enclosure, where the first lidar sensor and the second lidar sensor are contained within the enclosure. Each scanner includes one or more mirrors, and each mirror is driven by a scan mechanism.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Scott R. Campbell, Rodger W. Cleye, Jason M. Eichenholz, Lane A. Martin, Matthew D. Weed
  • Publication number: 20190242978
    Abstract: To compensate for the uneven distribution of data points around the periphery of a vehicle in a lidar system, a light source transmits light pulses at a variable pulse rate according to the orientation of the light pulses with respect to the lidar system. A controller may communicate with a scanner in the lidar system that provides the orientations of the light pulses to the controller. The controller may then provide a control signal to the light source adjusting the pulse rate based on the orientations of the light pulses. For example, the pulse rate may be slower near the front of the lidar system and faster near the periphery. In another example, the pulse rate may be faster near the front of the lidar system and slower near the periphery.
    Type: Application
    Filed: April 19, 2019
    Publication date: August 8, 2019
    Inventors: Matthew D. Weed, Scott R. Campbell, Lane A. Martin, Jason M. Eichenholz, Austin K. Russell
  • Publication number: 20190235052
    Abstract: In one embodiment, a method for dynamically varying receiver characteristics in a lidar system includes emitting light pulses by a light source in a lidar system. The method further includes detecting, by a receiver in the lidar system, light from one of the light pulses scattered by one or more remote targets to identify a return light pulse. The method also includes determining an atmospheric condition at or near a geolocation of a vehicle that includes the lidar system. The method further includes providing a control signal to the receiver adjusting one or more characteristics of the receiver to compensate for attenuation or distortion of the return light pulses associated with the atmospheric condition.
    Type: Application
    Filed: April 8, 2019
    Publication date: August 1, 2019
    Inventors: Joseph G. LaChapelle, Matthew D. Weed, Scott R. Campbell, Jason M. Eichenholz, Austin K. Russell, Lane A. Martin
  • Patent number: 10340653
    Abstract: A lidar system can include a solid-state laser to emit pulses of light. The solid-state laser can include a Q-switched laser having a gain medium and a Q-switch. The lidar system can also include a scanner configured to scan the emitted pulses of light across a field of regard and a receiver configured to detect at least a portion of the scanned pulses of light scattered by a target located a distance from the lidar system. The lidar system can also include a processor configured to determine the distance from the lidar system to the target based at least in part on a round-trip time of flight for an emitted pulse of light to travel from the lidar system to the target and back to the lidar system.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: July 2, 2019
    Assignee: Luminar Technologies, Inc.
    Inventors: David Welford, Martin A. Jaspan, Jason M. Eichenholz, Scott R. Campbell, Lane A. Martin, Matthew D. Weed
  • Patent number: 10310058
    Abstract: A lidar system includes one or more light sources configured to generate a first and second beams of light, a scanner configured to synchronously scan a field of regard of the lidar system using the two beams, and a receiver configured to detect light of the two beams scattered by one or more remote targets. The scanner includes a rotatable polygon mirror having a block having a first wall, a second wall, and reflective surfaces extending between the first and second walls, the reflective surfaces being angularly offset from one another along a periphery of the block; a polygon mirror axle extending into the block, about which the block rotates; optical elements configured to direct the first and second beams of light respectively to two adjacent reflective surfaces of the rotatable polygon mirror; and a second mirror pivotable along an axis orthogonal to the polygon mirror axle.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: June 4, 2019
    Assignee: Luminar Technologies, Inc.
    Inventors: Scott R. Campbell, Jason M. Eichenholz, Matthew D. Weed, Lane A. Martin
  • Publication number: 20190154802
    Abstract: A lidar system includes one or more light sources configured to generate a first and second beams of light, a scanner configured to synchronously scan a field of regard of the lidar system using the two beams, and a receiver configured to detect light of the two beams scattered by one or more remote targets. The scanner includes a rotatable polygon mirror having a block having a first wall, a second wall, and reflective surfaces extending between the first and second walls, the reflective surfaces being angularly offset from one another along a periphery of the block; a polygon mirror axle extending into the block, about which the block rotates; optical elements configured to direct the first and second beams of light respectively to two adjacent reflective surfaces of the rotatable polygon mirror; and a second mirror pivotable along an axis orthogonal to the polygon mirror axle.
    Type: Application
    Filed: April 27, 2018
    Publication date: May 23, 2019
    Inventors: Scott R. Campbell, Jason M. Eichenholz, Matthew D. Weed, Lane A. Martin
  • Patent number: 10267898
    Abstract: A lidar system is disclosed. The lidar system can include a light source to produce first and second sets of pulses of light. The system can also include a first lidar sensor with a first scanner to scan the first set of pulses of light along a first scan pattern, and a first receiver to detect scattered light from the first set of pulses of light. The system can also include a second lidar sensor with a second scanner to scan the second set of pulses of light along a second scan pattern, and a second receiver to detect scattered light from the second set of pulses of light. The first scan pattern and the second scan pattern can be at least partially overlapped in an overlap region. The lidar system can also include an enclosure to contain the light source, the first lidar sensor, and the second lidar sensor.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: April 23, 2019
    Assignee: Luminar Technologies, Inc.
    Inventors: Scott R. Campbell, Rodger W. Cleye, Jason M. Eichenholz, Lane A. Martin, Matthew D. Weed
  • Patent number: 10267899
    Abstract: To compensate for the uneven distribution of data points around the periphery of a vehicle in a lidar system, a light source transmits light pulses at a variable pulse rate according to the orientation of the light pulses with respect to the lidar system. A controller may communicate with a scanner in the lidar system that provides the orientations of the light pulses to the controller. The controller may then provide a control signal to the light source adjusting the pulse rate based on the orientations of the light pulses. For example, the pulse rate may be slower near the front of the lidar system and faster near the periphery. In another example, the pulse rate may be faster near the front of the lidar system and slower near the periphery.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: April 23, 2019
    Assignee: Luminar Technologies, Inc.
    Inventors: Matthew D. Weed, Scott R. Campbell, Lane A. Martin, Jason M. Eichenholz, Austin K. Russell
  • Publication number: 20190107623
    Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan at least a portion of the emitted pulses of light along a scan pattern contained within an adjustable field of regard. The scanner includes a first scanning mirror configured to scan the portion of the emitted pulses of light substantially parallel to a first scan axis to produce multiple scan lines of the scan pattern, where each scan line is oriented substantially parallel to the first scan axis. The scanner also includes a second scanning mirror configured to distribute the scan lines along a second scan axis that is substantially orthogonal to the first scan axis, where the scan lines are distributed within the adjustable field of regard according to an adjustable second-axis scan profile.
    Type: Application
    Filed: October 9, 2018
    Publication date: April 11, 2019
    Inventors: Scott R. Campbell, Matthew D. Weed, Lane A. Martin, Jason M. Eichenholz, Austin K. Russell
  • Patent number: 10254388
    Abstract: To detect an atmospheric condition at the current location of a lidar system, a receiver in the lidar system detects a return light pulse scattered by a target and analyzes the characteristics of the return light pulse. The characteristics of the return light pulse include a rise time, a fall time, a duration, a peak power, an amount of energy, etc. When the rise time, fall time, and/or duration exceed respective thresholds, the lidar system detects the atmospheric condition such as fog, sleet, snow, rain, dust, smog, exhaust, or insects. In response to detecting the atmospheric condition, the lidar system adjusts the characteristics of subsequent pulses to compensate for attenuation or distortion of return light pulses due to the atmospheric condition. For example, the lidar system adjusts the peak power, pulse energy, pulse duration, inter-pulse-train spacing, number of pulses, or any other suitable characteristic.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: April 9, 2019
    Assignee: Luminar Technologies, Inc.
    Inventors: Joseph G. LaChapelle, Matthew D. Weed, Scott R. Campbell, Jason M. Eichenholz, Austin K. Russell, Lane A. Martin
  • Patent number: 10209359
    Abstract: To increase the effective pulse rate of a light source in a lidar system, a controller provides control signals to the light source to transmit a light pulse once the previous light pulse has been received. The controller may communicate with a receiver in the lidar system that detects received light signals. In response to detecting a received light signal, the receiver may provide an indication of the received light signal to the controller which may in turn provide a control signal to the light source to transmit the next light pulse. The receiver may also provide characteristics of the received light signal to the controller, such as the peak power for the received light signal, the average power for the received light signal, the pulse duration of the received light signal, etc. Then the controller may analyze the characteristics to determine whether to transmit another light pulse.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: February 19, 2019
    Assignee: LUMINAR TECHNOLOGIES, INC.
    Inventors: Austin K. Russell, Matthew D. Weed, Liam J. McGregor, Lane A. Martin, Jason M. Eichenholz
  • Publication number: 20180364356
    Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan at least a portion of the emitted pulses of light across a field of regard. The lidar system also includes a receiver configured to detect at least a portion of the scanned pulses of light scattered by a target located a distance from the lidar system.
    Type: Application
    Filed: November 29, 2016
    Publication date: December 20, 2018
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin