Patents by Inventor Lane Martin

Lane Martin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180310537
    Abstract: The invention pertains to methods and systems for securing fish bait without killing, injuring, or damaging the structure of the fish bait without obscuring the bait or lure while improving the chances of catching a nearby fish. All types of bait or lures are secured by a mesh pouch in close proximity to a fish hook. The fishing hook may remain outside of the mesh pouch or be assembled inside the mesh pouch along with the bait. The bait may be live, previously live, artificial, or prepared such as cut bait or dough balls. There is no penetration of the bait by the hook so live bait tends to stay alive and active or if it is prepared, it will tend to stay in tack.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 1, 2018
    Inventors: Diane Lady Martin, Alan Lane Martin, Alison Lady Martin, Fred Lane Martin, Robert Murrel Creed
  • Publication number: 20180284224
    Abstract: To compensate for the uneven distribution of data points around the periphery of a vehicle in a lidar system, a light source transmits light pulses at a variable pulse rate according to the orientation of the light pulses with respect to the lidar system. A controller may communicate with a scanner in the lidar system that provides the orientations of the light pulses to the controller. The controller may then provide a control signal to the light source adjusting the pulse rate based on the orientations of the light pulses. For example, the pulse rate may be slower near the front of the lidar system and faster near the periphery. In another example, the pulse rate may be faster near the front of the lidar system and slower near the periphery.
    Type: Application
    Filed: January 22, 2018
    Publication date: October 4, 2018
    Inventors: Matthew D. Weed, Scott R. Campbell, Lane A. Martin, Jason M. Eichenholz, Austin K. Russell
  • Publication number: 20180284286
    Abstract: A lidar system operating in a vehicle comprising a first eye configured to scan a first field of regard and a second eye configured to scan a second field of regard. Each of the first eye and the second eye includes a respective optical element configured to output a beam of light, a respective scan mirror configured to scan the beam of light along a vertical dimension of the respective field of regard, and a respective receiver configured to detect scattered light from the beam of light. The field of regard of the lidar system includes the first field of regard and the second field of regard, combined along a horizontal dimension of the first field of regard and the second field of regard.
    Type: Application
    Filed: April 2, 2018
    Publication date: October 4, 2018
    Inventors: Jason M. Eichenholz, Scott R. Campbell, Matthew D. Weed, Lane A. Martin
  • Publication number: 20180284226
    Abstract: To detect an atmospheric condition at the current location of a lidar system, a receiver in the lidar system detects a return light pulse scattered by a target and analyzes the characteristics of the return light pulse. The characteristics of the return light pulse include a rise time, a fall time, a duration, a peak power, an amount of energy, etc. When the rise time, fall time, and/or duration exceed respective thresholds, the lidar system detects the atmospheric condition such as fog, sleet, snow, rain, dust, smog, exhaust, or insects. In response to detecting the atmospheric condition, the lidar system adjusts the characteristics of subsequent pulses to compensate for attenuation or distortion of return light pulses due to the atmospheric condition. For example, the lidar system adjusts the peak power, pulse energy, pulse duration, inter-pulse-train spacing, number of pulses, or any other suitable characteristic.
    Type: Application
    Filed: March 1, 2018
    Publication date: October 4, 2018
    Inventors: Joseph G. LaChapelle, Matthew D. Weed, Scott R. Campbell, Jason M. Eichenholz, Austin K. Russell, Lane A. Martin
  • Publication number: 20180284278
    Abstract: To increase the effective pulse rate of a light source in a lidar system, a controller provides control signals to the light source to transmit a light pulse once the previous light pulse has been received. The controller may communicate with a receiver in the lidar system that detects received light signals. In response to detecting a received light signal, the receiver may provide an indication of the received light signal to the controller which may in turn provide a control signal to the light source to transmit the next light pulse. The receiver may also provide characteristics of the received light signal to the controller, such as the peak power for the received light signal, the average power for the received light signal, the pulse duration of the received light signal, etc. Then the controller may analyze the characteristics to determine whether to transmit another light pulse.
    Type: Application
    Filed: December 18, 2017
    Publication date: October 4, 2018
    Inventors: Austin K. Russell, Matthew D. Weed, Liam J. McGregor, Lane A. Martin, Jason M. Eichenholz
  • Publication number: 20180284225
    Abstract: To compensate for motor dynamics in a scanner in a lidar system, a light source transmits light pulses at a variable pulse rate in accordance with a scan speed of the scanner. More specifically, the pulse rate may be directly related to the scan speed so that the light source transmits light pulses uniformly across a field of regard. A controller may determine the scan speed and provide a control signal to the light source adjusting the pulse rate accordingly.
    Type: Application
    Filed: January 22, 2018
    Publication date: October 4, 2018
    Inventors: Matthew D. Weed, Scott R. Campbell, Lane A. Martin, Jason M. Eichenholz, Austin K. Russell, Rodger W. Cleye, Melvin L. Stauffer
  • Publication number: 20180284237
    Abstract: A lidar system includes a light source configured to emit light, a scanner configured to scan a field of regard of the lidar system using (i) a first output beam that includes at least a portion of the emitted light and has a first amount of power and (ii) a second output beam that includes at least a portion of the emitted light and has a second amount of power different from the first amount of power, with an angular separation between the first output beam and the second output beam along a vertical dimension of the field of regard, and a receiver configured to detect light associated with the first output beam and light associated with the second output beam scattered by one or more remote targets.
    Type: Application
    Filed: March 30, 2018
    Publication date: October 4, 2018
    Inventors: Scott R. Campbell, Matthew D. Weed, Lane A. Martin, Jason M. Eichenholz
  • Publication number: 20180284241
    Abstract: A lidar system includes a light source, a scanner, and a receiver and is configured to detect remote targets located up to RMAX meters away. The receiver includes a detector with a field of view larger than the light-source field of view. The scanner causes the detector field of view to move relative to the instantaneous light-source field of view along the scan direction, so that (i) when a pulse of light is emitted, the instantaneous light-source field of view is approximately centered within the detector field of view, and (ii) when a scattered pulse of light returns from a target located RMAX meters away, the instantaneous light-source field of view is located near an edge of the field of view of the detector and is contained within the field of view of the detector.
    Type: Application
    Filed: September 20, 2017
    Publication date: October 4, 2018
    Inventors: Scott R. Campbell, Lane A. Martin, Matthew D. Weed, Jason M. Eichenholz
  • Patent number: 10088559
    Abstract: To compensate for motor dynamics in a scanner in a lidar system, a light source transmits light pulses at a variable pulse rate in accordance with a scan speed of the scanner. More specifically, the pulse rate may be directly related to the scan speed so that the light source transmits light pulses uniformly across a field of regard. A controller may determine the scan speed and provide a control signal to the light source adjusting the pulse rate accordingly.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: October 2, 2018
    Assignee: LUMINAR TECHNOLOGIES, INC.
    Inventors: Matthew D. Weed, Scott R. Campbell, Lane A. Martin, Jason M. Eichenholz, Austin K. Russell, Rodger W. Cleye, Melvin L. Stauffer
  • Publication number: 20180275249
    Abstract: A lidar system is disclosed. The lidar system can include a light source to produce first and second sets of pulses of light. The system can also include a first lidar sensor with a first scanner to scan the first set of pulses of light along a first scan pattern, and a first receiver to detect scattered light from the first set of pulses of light. The system can also include a second lidar sensor with a second scanner to scan the second set of pulses of light along a second scan pattern, and a second receiver to detect scattered light from the second set of pulses of light. The first scan pattern and the second scan pattern can be at least partially overlapped in an overlap region. The lidar system can also include an enclosure to contain the light source, the first lidar sensor, and the second lidar sensor.
    Type: Application
    Filed: January 15, 2018
    Publication date: September 27, 2018
    Inventors: SCOTT R. CAMPBELL, RODGER W. CLEYE, JASON M. EICHENHOLZ, LANE A. MARTIN, MATTHEW D. WEED
  • Publication number: 20180269646
    Abstract: A lidar system can include a solid-state laser to emit pulses of light. The solid-state laser can include a Q-switched laser having a gain medium and a Q-switch. The lidar system can also include a scanner configured to scan the emitted pulses of light across a field of regard and a receiver configured to detect at least a portion of the scanned pulses of light scattered by a target located a distance from the lidar system. The lidar system can also include a processor configured to determine the distance from the lidar system to the target based at least in part on a round-trip time of flight for an emitted pulse of light to travel from the lidar system to the target and back to the lidar system.
    Type: Application
    Filed: February 21, 2018
    Publication date: September 20, 2018
    Inventors: David Welford, Martin A. Jaspan, Jason M. Eichenholz, Scott R. Campbell, Lane A. Martin, Matthew D. Weed
  • Patent number: 10012732
    Abstract: A lidar system with a pulsed laser diode to produce a plurality of optical seed pulses of light at one or more operating wavelengths between approximately 1400 nm and approximately 1600 nm. The lidar system may also include one or more optical amplifiers to amplify the optical seed pulses to produce a plurality of output optical pulses. Each optical amplifier may produce an amount of amplified spontaneous emission (ASE), and the output optical pulses may have characteristics comprising: a pulse repetition frequency of less than or equal to 100 MHz; a pulse duration of less than or equal to 20 nanoseconds; and a duty cycle of less than or equal to 1%. The lidar system may also include one or more optical filters to attenuate the ASE and a receiver to detect at least a portion of the output optical pulses scattered by a target located a distance.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: July 3, 2018
    Assignee: Luminar Technologies, Inc.
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Publication number: 20180120433
    Abstract: A lidar system with a pulsed laser diode to produce a plurality of optical seed pulses of light at one or more operating wavelengths between approximately 1400 nm and approximately 1600 nm. The lidar system may also include one or more optical amplifiers to amplify the optical seed pulses to produce a plurality of output optical pulses. Each optical amplifier may produce an amount of amplified spontaneous emission (ASE), and the output optical pulses may have characteristics comprising: a pulse repetition frequency of less than or equal to 100 MHz; a pulse duration of less than or equal to 20 nanoseconds; and a duty cycle of less than or equal to 1%. The lidar system may also include one or more optical filters to attenuate the ASE and a receiver to detect at least a portion of the output optical pulses scattered by a target located a distance.
    Type: Application
    Filed: December 29, 2017
    Publication date: May 3, 2018
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Patent number: 9958545
    Abstract: A lidar system with a light source to emit a pulse of light and a receiver to detect a return pulse of light. The receiver can include a first channel to receive a first portion of the return pulse and produce a first digital output signal, and a second channel to receive a second portion of the return pulse and produce a second digital output signal. The receiver can include a logic circuit to produce an output electrical-edge signal in response to receiving the digital output signals. The receiver can also include a time-to-digital converter to determine a time interval based on an emission time of the pulse of light and based on the electrical-edge signal. The lidar system can also include a processor to determine a distance to a target based at least in part on the time interval.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: May 1, 2018
    Assignee: Luminar Technologies, Inc.
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Publication number: 20180088236
    Abstract: A lidar system with a light source to emit a pulse of light and a receiver to detect a return pulse of light. The receiver can include a first channel to receive a first portion of the return pulse and produce a first digital output signal, and a second channel to receive a second portion of the return pulse and produce a second digital output signal. The receiver can include a logic circuit to produce an output electrical-edge signal in response to receiving the digital output signals. The receiver can also include a time-to-digital converter to determine a time interval based on an emission time of the pulse of light and based on the electrical-edge signal. The lidar system can also include a processor to determine a distance to a target based at least in part on the time interval.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 29, 2018
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Patent number: 9905992
    Abstract: In one embodiment, a lidar system includes a self-Raman laser that includes a Raman-active gain medium and a Q-switch. The self-Raman laser is configured to: produce Q-switched pulses of light at a lasing wavelength of the self-Raman laser; Raman-shift, in the Raman-active gain medium, at least a portion of the Q-switched pulses to produce Raman-shifted pulses of light, where the Raman-shifted pulses have a Raman-shifted wavelength that is longer than the lasing wavelength; and emit at least a portion of the Raman-shifted pulses. The lidar system further includes a scanner configured to scan the emitted pulses of light across a field of regard and a receiver configured to detect at least a portion of the scanned pulses of light scattered by a target located a distance from the lidar system. The lidar system also includes a processor configured to determine the distance from the lidar system to the target.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: February 27, 2018
    Assignee: LUMINAR TECHNOLOGIES, INC.
    Inventors: David Welford, Martin A. Jaspan, Jason M. Eichenholz, Scott R. Campbell, Lane A. Martin, Matthew D. Weed
  • Patent number: 9897687
    Abstract: A lidar system may have a light source configured to emit pulses of light along a field of view of the light source and a scanner to scan the light source field of view in a scanning direction across a plurality of pixels located downrange from the lidar system. The scanner can direct a pulse of light, which is emitted by the light source along the light source field of view, toward a pixel and can scan a field of view of a first detector. The first detector field of view can be scanned in the scanning direction across the plurality of pixels and the scanning speed of the first detector field of view can be approximately equal to the scanning speed of the light source field of view. The first detector can detect a portion of the pulse of light scattered by a target located at least partially within the pixel.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: February 20, 2018
    Assignee: LUMINAR TECHNOLOGIES, INC.
    Inventors: Scott R. Campbell, Jason M. Eichenholz, Lane A. Martin, Matthew D. Weed
  • Publication number: 20180024241
    Abstract: A lidar system with a pulsed laser diode configured to produce an optical seed pulse of light at an operating wavelength between approximately 1400 nm and approximately 1600 nm. The lidar system may also include an optical amplifier configured to amplify the optical seed pulse to produce an eye-safe output optical pulse that is emitted into a field of view. The optical amplifier may produce an amount of amplified spontaneous emission (ASE) associated with the output optical pulse. The lidar system may include an optical filter configured to filter the output optical pulse to reduce the associated ASE. The lidar system may also include a receiver configured to detect at least a portion of the output optical pulse reflected or scattered from the field of view.
    Type: Application
    Filed: March 27, 2017
    Publication date: January 25, 2018
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Patent number: 9874635
    Abstract: A lidar system having a light source to emit an output beam and an overlap mirror having a reflecting surface with an aperture through which the output beam passes. The lidar system may include mirrors driven by a galvanometer scanner, a resonant scanner, a microelectromechanical systems device, or a voice coil motor. The mirrors may direct the output beam toward a light source field of view (FOV) and may move the light source FOV to different locations within a field of regard. The mirrors may receive reflected portions of the output beam as an input beam and direct the input beam toward the reflecting surface of the overlap mirror. The lidar system may include a receiver to receive the input beam from the reflecting surface of the overlap mirror. The receiver may have a receiver FOV that moves synchronously with, and at least partially overlaps, the light source FOV.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: January 23, 2018
    Assignee: Luminar Technologies, Inc.
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Patent number: 9869754
    Abstract: In one embodiment, a system includes a first lidar sensor, which includes a first scanner configured to scan first pulses of light along a first scan pattern and a first receiver configured to detect scattered light from the first pulses of light. The system also includes a second lidar sensor, which includes a second scanner configured to scan second pulses of light along a second scan pattern and a second receiver configured to detect scattered light from the second pulses of light. The first scan pattern and the second scan pattern are at least partially overlapped. The system further includes an enclosure, where the first lidar sensor and the second lidar sensor are contained within the enclosure. The enclosure includes a window configured to transmit the first pulses of light and the second pulses of light.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: January 16, 2018
    Assignee: Luminar Technologies, Inc.
    Inventors: Scott R. Campbell, Rodger W. Cleye, Jason M. Eichenholz, Lane A. Martin, Matthew D. Weed