Patents by Inventor Larry D. Smith

Larry D. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220204545
    Abstract: The present disclosure is concerned with 6-aza-nucleoside prodrugs that are capable of inhibiting a viral infection and methods of treating viral infections such as, for example, human immunodeficiency virus (HIV), human papillomavirus (HPV), chicken pox, infectious mononucleosis, mumps, measles, rubella, shingles, ebola, viral gastroenteritis, viral hepatitis, viral meningitis, human metapneumovirus, human parainfluenza virus type 1, parainfluenza virus type 2, parainfluenza virus type 3, respiratory syncytial virus, viral pneumonia, yellow fever virus, tick-borne encephalitis virus, Chikungunya virus (CHIKV), Venezuelan equine encephalitis (VEEV), Eastern equine encephalitis (EEEV), Western equine encephalitis (WEEV), dengue (DENV), influenza, West Nile virus (WNV), zika (ZIKV), Middle East Respiratory Syndromes (MERS), Severe Acute Respiratory Syndrome (SARS), and coronavirus disease 2019 (COVID-19), using these compounds.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 30, 2022
    Inventors: Omar Moukha-Chafiq, Ashish Kumar Pathak, Shuklendu D. Karyakarte, Larry D. Bratton, Corinne E. Augelli-Szafran, Michael Diamond, Pei Yong Shi, Alec Jay Hirsch, Jessica Lee Smith, Daniel Streblow, Nicole Haese, Baoling Ying
  • Patent number: 7162795
    Abstract: A system and method for distributing power to an integrated circuit. In one embodiment, a power laminate may be mounted to a printed circuit board (PCB). The integrated circuit for which power is to be distributed may be electrically coupled to the PCB. The power laminate may include one or more power planes and one or more reference (i.e. ground) planes, with each pair of power/reference planes separated by a dielectric layer. The power laminate may also include a connector or other means for receiving power from an external power source. The power laminate may be electrically coupled to the integrated circuit, thereby enabling it to provide power to the integrated circuit. The power laminate may also include a voltage regulator circuit, and a plurality of decoupling capacitors.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: January 16, 2007
    Assignee: Sun Microsystems, Inc.
    Inventors: Larry D. Smith, Istvan Novak, Michael C. Freda
  • Patent number: 6937971
    Abstract: A system and method for determining the desired decoupling components for a power distribution system having a voltage regulator module. The system may employ a mathematical model of a voltage regulator circuit, such as a switching voltage regulator. The mathematical model may be a SPICE model, or a circuit model in another format. The method may include simulating the operation of the power distribution system to obtain a estimate of the bulk capacitance required for effective decoupling. For digital systems, the method may include a cycle-by-cycle simulation of the power distribution system, wherein the simulation occurs over a number of clock cycles. The performance of the power distribution system may then be analyzed for each simulated clock cycle. The simulation may also include analyzing the transient responses and loop stability of the power distribution.
    Type: Grant
    Filed: July 25, 2000
    Date of Patent: August 30, 2005
    Assignee: Sun Microsystems, Inc.
    Inventors: Larry D. Smith, Raymond E. Anderson, Tanmoy Roy
  • Patent number: 6850878
    Abstract: A system and method for determining the required decoupling capacitors for a power distribution system using an improved capacitor model. In one embodiment, a method for determining the decoupling capacitors for a power distribution system includes creating a model of the power distribution system using circuit simulation software, such as SPICE. The power distribution system model includes a plurality of cells interconnected at predetermined nodes. The method then selects one or more decoupling capacitors for the power distribution system. The decoupling capacitors are represented in the power distribution system model by a capacitor model, which is a mathematical model of an electrical circuit. The electrical circuit upon which the capacitor model is based is a ladder circuit. Following the selecting of the decoupling capacitors, the power distribution system model is update based on the selections, and operation of the power distribution system is then simulated.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: February 1, 2005
    Assignee: Sun Microsystems, Inc.
    Inventors: Larry D. Smith, David Hockanson
  • Patent number: 6794581
    Abstract: A system and method for distributing power to an integrated circuit. In one embodiment, a power laminate may be mounted to a printed circuit board (PCB). The integrated circuit for which power is to be distributed may be electrically coupled to the PCB. The power laminate may include one or more power planes and one or more reference (i.e. ground) planes, with each pair of power/reference planes separated by a dielectric layer. The power laminate may also include a connector or other means for receiving power from an external power source. The power laminate may be electrically coupled to the integrated circuit, thereby enabling it to provide power to the integrated circuit. The PCB may include a signal layer for conveying signals to and from the integrated circuit, but does not include any means for providing core power to the integrated circuit. Thus, all core power provided to the integrated circuit may be supplied by the power laminate.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: September 21, 2004
    Assignee: Sun Microsystems, Inc.
    Inventors: Larry D. Smith, Istvan Novak, Michael C. Freda, Ali Hassanzadeh
  • Patent number: 6791846
    Abstract: A system and method for distributing power to an integrated circuit. In one embodiment, a power laminate may be mounted to a printed circuit board (PCB). The integrated circuit for which power is to be distributed may be electrically coupled to the PCB. The power laminate may include one or more power planes and one or more reference (i.e. ground) planes, with each pair of power/reference planes separated by a dielectric layer. The power laminate may also include a connector or other means for receiving power from an external power source. The power laminate may be electrically coupled to the integrated circuit, thereby enabling it to provide power to the integrated circuit. The power laminate may also include a voltage regulator circuit, and a plurality of decoupling capacitors.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: September 14, 2004
    Assignee: Sun Microsystems, Inc.
    Inventors: Larry D. Smith, Istvan Novak, Michael C. Freda
  • Patent number: 6789241
    Abstract: A methodology for determining the placement of decoupling capacitors in a power distribution system and system therefor is disclosed. In one embodiment, a method for determining the placement of decoupling capacitors in a power distribution system includes determining target impedance, creating a power distribution system model, performing an LC (inductive-capacitive) resonance analysis, and performing a cavity resonance analysis. During the performance of the LC resonance analysis, capacitors may be selected in order to suppress impedance peaks resulting from LC resonances. Following the LC resonance analysis, the method may place the capacitors in the power distribution system at evenly spaced intervals. During the performance of the cavity resonance analysis, the capacitors may be repositioned in the power distribution system so as to suppress cavity resonances.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: September 7, 2004
    Assignee: Sun Microsystems, Inc.
    Inventors: Raymond E. Anderson, Larry D. Smith, Sungjun Chun
  • Patent number: 6760232
    Abstract: A system and method for distributing power to an integrated circuit. In one embodiment, a power laminate may be mounted to a printed circuit board (PCB). The integrated circuit for which power is to be distributed may be electrically coupled to the PCB. The power laminate may include one or more power planes and one or more reference (i.e. ground) planes, with each pair of power/reference planes separated by a dielectric layer. The power laminate may also include a connector or other means for receiving power from an external power source. The power laminate may be electrically coupled to the integrated circuit, thereby enabling it to provide core power to the integrated circuit. The power laminate may also include a voltage regulator circuit, and a plurality of decoupling capacitors. In one embodiment, the power laminate may include a plurality of apertures which allow for the passing of connections between the integrated circuit and the PCB.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: July 6, 2004
    Assignee: Sun Microsystems, Inc.
    Inventors: Larry D. Smith, Michael C. Freda, Ali Hassanzadeh
  • Publication number: 20040088661
    Abstract: A methodology for determining the placement of decoupling capacitors in a power distribution system and system therefor is disclosed. In one embodiment, a method for determining the placement of decoupling capacitors in a power distribution system includes determining target impedance, creating a power distribution system model, performing an LC (inductive-capacitive) resonance analysis, and performing a cavity resonance analysis. During the performance of the LC resonance analysis, capacitors may be selected in order to suppress impedance peaks resulting from LC resonances. Following the LC resonance analysis, the method may place the capacitors in the power distribution system at evenly spaced intervals. During the performance of the cavity resonance analysis, the capacitors may be repositioned in the power distribution system so as to suppress cavity resonances.
    Type: Application
    Filed: October 31, 2002
    Publication date: May 6, 2004
    Inventors: Raymond E. Anderson, Larry D. Smith, Sungjun Chun
  • Patent number: 6571184
    Abstract: A system and method for determining the desired decoupling capacitors for power distribution systems having frequency dependent target impedance. In one embodiment, the target impedance may be a function of frequency, and thus may vary in value over a frequency range from 0 Hz to a corner frequency. A specific quantity of decoupling capacitors may be selected to provide decoupling for the power distribution for a given frequency within the frequency range. A total impedance provided by the specific quantity of selected decoupling capacitors may be calculated and compared to the calculated target impedance for the given frequency. If the total impedance provided by the specific quantity of selected decoupling capacitors is greater than the target impedance for the given frequency, the impedance may be adjusted by changing the quantity of capacitors. Capacitors may continue to be added until the total impedance is less than the target impedance.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: May 27, 2003
    Assignee: Sun Microsystems, Inc.
    Inventors: Raymond E. Anderson, Larry D. Smith, Tanmoy Roy
  • Patent number: 6564355
    Abstract: A system and method for analyzing simultaneous switching noise. In one embodiment, a model may be provided for the electronic circuit to be analyzed. The electronic circuit may be an integrated circuit, a multi-chip module, a printed circuit assembly, or other type, and may in some embodiments include combinations of these types. The electronic circuit may include a plurality of drivers, each of which may be coupled to a power plane, a ground plane, and a transmission line. The connection of the driver may be accurately modeled in this manner. Each driver may be configured to switch between a logic high voltage and a logic low voltage. The modeled electronic circuit may also include a voltage source coupled to the power plane and the ground plane, a voltage regulator module, and a plurality of decoupling capacitors. The simultaneous switching of a plurality of drivers, from a logic high to a logic low, or vice versa, may be simulated.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: May 13, 2003
    Assignee: Sun Microsystems, Inc.
    Inventors: Larry D. Smith, Raymond E. Anderson, Tanmoy Roy
  • Patent number: 6532439
    Abstract: A method for determining the desired decoupling components for stabilizing the electrical impedance in the power distribution system of an electrical interconnecting apparatus, including a method for measuring the ESR for an electrical device, a method for determining a number of desired decoupling components for a power distribution system, and a method for placing the desired decoupling components in the power distribution system. The method creates a model of the power distribution system based upon an M×N grid for both the power plane and the ground plane. The model receives input from a user and from a database of various characteristics for a plurality of decoupling components. The method determines a target impedance over a desired frequency range. The method selects decoupling components. The method determines a number for each of the decoupling components chosen. The method places current sources in the model at spatial locations corresponding to physical locations of active components.
    Type: Grant
    Filed: June 18, 1998
    Date of Patent: March 11, 2003
    Assignee: Sun Microsystems, Inc.
    Inventors: Raymond E. Anderson, Larry D. Smith, Tanmoy Roy
  • Publication number: 20020169590
    Abstract: A system and method for determining the required decoupling capacitors for a power distribution system using an improved capacitor model. In one embodiment, a method for determining the decoupling capacitors for a power distribution system includes creating a model of the power distribution system using circuit simulation software, such as SPICE. The power distribution system model includes a plurality of cells interconnected at predetermined nodes. The method then selects one or more decoupling capacitors for the power distribution system. The decoupling capacitors are represented in the power distribution system model by a capacitor model, which is a mathematical model of an electrical circuit. The electrical circuit upon which the capacitor model is based is a ladder circuit. Following the selecting of the decoupling capacitors, the power distribution system model is update based on the selections, and operation of the power distribution system is then simulated.
    Type: Application
    Filed: April 24, 2001
    Publication date: November 14, 2002
    Inventors: Larry D. Smith, David Hockanson
  • Publication number: 20020145839
    Abstract: A system and method for distributing power to an integrated circuit. In one embodiment, a power laminate may be mounted to a printed circuit board (PCB). The integrated circuit for which power is to be distributed may be electrically coupled to the PCB. The power laminate may include one or more power planes and one or more reference (i.e. ground) planes, with each pair of power/reference planes separated by a dielectric layer. The power laminate may also include a connector or other means for receiving power from an external power source. The power laminate may be electrically coupled to the integrated circuit, thereby enabling it to provide power to the integrated circuit. The power laminate may also include a voltage regulator circuit, and a plurality of decoupling capacitors.
    Type: Application
    Filed: March 16, 2001
    Publication date: October 10, 2002
    Inventors: Larry D. Smith, Istvan Novak, Michael C. Freda
  • Publication number: 20020129974
    Abstract: A system and method for distributing power to an integrated circuit. In one embodiment, a power laminate may be mounted to a printed circuit board (PCB). The integrated circuit for which power is to be distributed may be electrically coupled to the PCB. The power laminate may include one or more power planes and one or more reference (i.e. ground) planes, with each pair of power/reference planes separated by a dielectric layer. The power laminate may also include a connector or other means for receiving power from an external power source. The power laminate may be electrically coupled to the integrated circuit, thereby enabling it to provide power to the integrated circuit. The PCB may include a signal layer for conveying signals to and from the integrated circuit, but does not include any means for providing core power to the integrated circuit. Thus, all core power provided to the integrated circuit may be supplied by the power laminate.
    Type: Application
    Filed: March 16, 2001
    Publication date: September 19, 2002
    Inventors: Larry D. Smith, Istvan Novak, Michael C. Freda, Ali Hassanzadeh
  • Publication number: 20020131256
    Abstract: A system and method for distributing power to an integrated circuit. In one embodiment, a power laminate may be mounted to a printed circuit board (PCB). The integrated circuit for which power is to be distributed may be electrically coupled to the PCB. The power laminate may include one or more power planes and one or more reference (i.e. ground) planes, with each pair of power/reference planes separated by a dielectric layer. The power laminate may also include a connector or other means for receiving power from an external power source. The power laminate may be electrically coupled to the integrated circuit, thereby enabling it to provide core power to the integrated circuit. The power laminate may also include a voltage regulator circuit, and a plurality of decoupling capacitors. In one embodiment, the power laminate may include a plurality of apertures which allow for the passing of connections between the integrated circuit and the PCB.
    Type: Application
    Filed: March 16, 2001
    Publication date: September 19, 2002
    Inventors: Larry D. Smith, Michael C. Freda, Ali Hassanzadeh
  • Publication number: 20020107647
    Abstract: A system and method for determining the desired decoupling capacitors for power distribution systems having frequency dependent target impedance. In one embodiment, the target impedance may be a function of frequency, and thus may vary in value over a frequency range from 0 Hz to a corner frequency. A specific quantity of decoupling capacitors may be selected to provide decoupling for the power distribution for a given frequency within the frequency range. A total impedance provided by the specific quantity of selected decoupling capacitors may be calculated and compared to the calculated target impedance for the given frequency. If the total impedance provided by the specific quantity of selected decoupling capacitors is greater than the target impedance for the given frequency, the impedance may be adjusted by changing the quantity of capacitors. Capacitors may continue to be added until the total impedance is less than the target impedance.
    Type: Application
    Filed: February 6, 2001
    Publication date: August 8, 2002
    Inventors: Raymond E. Anderson, Larry D. Smith, Tanmoy Roy
  • Patent number: 6385565
    Abstract: A system and method for using a computer system to determine the desired decoupling components for stabilizing the electrical impedance in the power distribution system of an electrical interconnecting apparatus, including a method for measuring the ESR for an electrical device, a method for determining a number of desired decoupling components for a power distribution system, and a method for placing the desired decoupling components in the power distribution system. The method creates a model of the power distribution system based upon an M×N grid for both the power plane and the ground plane. The model receives input from a user and from a database of various characteristics for a plurality of decoupling components. The method determines a target impedance over a desired frequency range. The method selects decoupling components. The method determines a number for each of the decoupling components chosen.
    Type: Grant
    Filed: June 18, 1998
    Date of Patent: May 7, 2002
    Assignee: Sun Microsystems, Inc.
    Inventors: Raymond E. Anderson, Larry D. Smith
  • Publication number: 20010034587
    Abstract: A method for determining the desired decoupling components for stabilizing the electrical impedance in the power distribution system of an electrical interconnecting apparatus, including a method for measuring the ESR for an electrical device, a method for determining a number of desired decoupling components for a power distribution system, and a method for placing the desired decoupling components in the power distribution system. The method creates a model of the power distribution system based upon an M×N grid for both the power plane and the ground plane. The model receives input from a user and from a database of various characteristics for a plurality of decoupling components. The method determines a target impedance over a desired frequency range. The method selects decoupling components. The method determines a number for each of the decoupling components chosen. The method places current sources in the model at spatial locations corresponding to physical locations of active components.
    Type: Application
    Filed: June 18, 1998
    Publication date: October 25, 2001
    Inventors: RAYMOND E. ANDERSON, LARRY D. SMITH, TANMOY ROY
  • Patent number: 6195613
    Abstract: A system and method for measuring the equivalent series resistance (ESR) of one or more capacitors using an impedance analyzer, whereby the capacitors are joined to the impedance analyzer with a conductive adhesive. The conductive adhesive may advantageously provide for an electrically and mechanically stable connection between the capacitor and the remainder of the electrical circuit used to measure the ESR of the capacitor. The conductive adhesive may include heat activated or cold solder, or conductive putty. The system comprises a measuring unit for sweeping a frequency range to find the minimum impedance for the capacitor and a connector assembly for holding the capacitor in an electrically and mechanically stable connection using the conductive adhesive. The connector assembly includes a mating portion adapted for electrically connecting the connector assembly to an I/O port of the measuring unit and a terminal portion that accommodates a connection to the capacitor using the conductive adhesive.
    Type: Grant
    Filed: September 8, 1998
    Date of Patent: February 27, 2001
    Assignee: Sun Microsystems, Inc.
    Inventors: Tanmoy Roy, Larry D. Smith, Raymond E. Anderson, Thomas J. Pelc, Douglas W. Forehand