Patents by Inventor Larry J. Yount

Larry J. Yount has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8760306
    Abstract: A sensor arrangement and method that may be used with a variety of different energy storage devices, including battery packs found in hybrid vehicles, battery electric vehicles, and other types of vehicles. An exemplary sensor arrangement includes a number of sensor units, a controller, and several connections, wherein two or more sensor units are coupled to each node of the battery pack and are coupled to the controller over different connections. An exemplary method is divided into two aspects: an error detection aspect and an error resolution aspect. Because the sensor arrangement provides multiple sensor readings for each node being evaluated, the method can enable the sensor arrangement to continue operating accurately and with redundancy even if it experiences a loss of one or more sensor units.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: June 24, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Andrew K. Chandler, Andrew H. Leutheuser, Willard A. Blevins, Larry J. Yount
  • Patent number: 8587318
    Abstract: A sensor arrangement and method that may be used with a variety of different energy storage devices, including battery packs found in hybrid vehicles, battery electric vehicles, and other types of vehicles. Some battery monitoring systems, such as those designed to monitor and/or control lithium-ion battery packs, may require individual voltage readings for each and every cell. If a battery monitoring system component—even one that provides just one of these sensor readings—malfunctions or otherwise experiences a fault condition, then it may be necessary to bring the entire vehicle in for service. The exemplary sensor arrangement and method may be used to control a series of balancing switches in the sensor arrangement in such a way that enables the vehicle to detect fault conditions and to continue operating successfully in the event that such fault conditions occur.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: November 19, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Andrew K. Chandler, Andrew H. Leutheuser, Willard A. Blevins, Larry J. Yount
  • Patent number: 8384354
    Abstract: A sensor arrangement and method that may be used with a variety of different energy storage devices, including battery packs found in hybrid vehicles, battery electric vehicles, and other types of vehicles. An exemplary sensor arrangement includes a number of sensor units, a controller, and several connections, wherein two or more sensor units are coupled to each node of the battery pack and are coupled to the controller over different connections. An exemplary method is divided into two aspects: an error detection aspect and an error resolution aspect. Because the sensor arrangement provides multiple sensor readings for each node being evaluated, the method can enable the sensor arrangement to continue operating accurately and with redundancy even if it experiences a loss of one or more sensor units.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: February 26, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Andrew K. Chandler, Andrew H. Leutheuser, Willard A. Blevins, Larry J. Yount
  • Publication number: 20120025835
    Abstract: A sensor arrangement and method that may be used with a variety of different energy storage devices, including battery packs found in hybrid vehicles, battery electric vehicles, and other types of vehicles. Some battery monitoring systems, such as those designed to monitor and/or control lithium-ion battery packs, may require individual voltage readings for each and every cell. If a battery monitoring system component—even one that provides just one of these sensor readings—malfunctions or otherwise experiences a fault condition, then it may be necessary to bring the entire vehicle in for service. The exemplary sensor arrangement and method may be used to control a series of balancing switches in the sensor arrangement in such a way that enables the vehicle to detect fault conditions and to continue operating successfully in the event that such fault conditions occur.
    Type: Application
    Filed: July 27, 2010
    Publication date: February 2, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Andrew K. Chandler, Andrew H. Leutheuser, Willard A. Blevins, Larry J. Yount
  • Patent number: 8036805
    Abstract: A distributed engine control system is provided. The engine control system includes first and second engine data concentrators. Each of the first and second engine data concentrators include a processor module, a signal conditioning module coupled to the processor module, a data transfer module coupled to the processor module, and a data bus coupled between the first and second engine data concentrators and a hydro-mechanical unit (HMU).
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: October 11, 2011
    Assignee: Honeywell International Inc.
    Inventors: Timothy D. Mahoney, Scot E. Griffiths, Larry J. Yount, Richard F. Hess, Brendan Hall, Devesh Bhatt, William M. McMahon, John Teager, Philip E. Rose
  • Patent number: 8033509
    Abstract: An aircraft flight surface control system and method simultaneously provides the benefits of both an active/active system architecture and in active/standby system architecture. The system is preferably implemented using hydraulic actuator assemblies and electromechanical actuator assemblies coupled to the same flight control surface. During normal system operations the electromechanical actuator assemblies are energized to supply a relatively minimal force to associated flight control surfaces. In effect, the electromechanical actuators, although energized, may be pulled along by the associated hydraulic actuator assemblies, until needed. Thus, the electromechanical actuator assemblies are controlled in a manner that closely resembles the active/standby architecture.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: October 11, 2011
    Assignee: Honeywell International Inc.
    Inventors: Larry J. Yount, Casey Hanlon, Andrew T. Johnson, Joseph Jackson
  • Publication number: 20110089953
    Abstract: A sensor arrangement and method that may be used with a variety of different energy storage devices, including battery packs found in hybrid vehicles, battery electric vehicles, and other types of vehicles. An exemplary sensor arrangement includes a number of sensor units, a controller, and several connections, wherein two or more sensor units are coupled to each node of the battery pack and are coupled to the controller over different connections. An exemplary method is divided into two aspects: an error detection aspect and an error resolution aspect. Because the sensor arrangement provides multiple sensor readings for each node being evaluated, the method can enable the sensor arrangement to continue operating accurately and with redundancy even if it experiences a loss of one or more sensor units.
    Type: Application
    Filed: October 15, 2009
    Publication date: April 21, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Andrew K. Chandler, Andrew H. Leutheuser, Willard A. Blevins, Larry J. Yount
  • Patent number: 7840316
    Abstract: An aircraft flight control surface actuation control system includes an actuator control unit and a flight control module. The actuator control unit includes at least two independent actuator control channels to generate limited authority flight control surface actuator commands based on pilot inceptor position signals and flight control augmentation data. The flight control module supplies the flight control augmentation data to each of the independent actuator control channels, determines operability of each of the actuator control channels and, based on the determined operability of each independent actuator control channel, selectively prevents one of the independent actuator control channels from supplying the limited authority flight control surface actuator commands. The flight control module may also generate full authority flight control surface actuator commands for supply to flight control surface actuators.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: November 23, 2010
    Assignee: Honeywell International Inc.
    Inventors: Larry J. Yount, Gerald B. Kelley, Kent A. Stange, Welsh C. Pond
  • Patent number: 7693616
    Abstract: Methods and systems are provided for redundancy management of a fly-by-wire avionics system. A control module for producing a control signal is provided comprising a common processing partition for receiving a flight input signal and at least one first mode input signal, a first processing partition coupled to the common processing partition and configured to receive the first mode input signals and flight input signal from the common processing partition, and a second processing partition coupled to the common processing partition. The first processing partition produces a first mode output signal in response to one of the first mode input signals and flight input signal. The second processing partition generates a second mode signal in response to the flight input signal when the first processing partition fails. The common processing partition produces the control signal in response to one of the first mode output signal and second mode signal.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: April 6, 2010
    Assignee: Honeywell International Inc.
    Inventors: Arthur D. Beutler, Larry J. Yount, Karen Brack
  • Publication number: 20090312892
    Abstract: A distributed engine control system is provided. The engine control system includes first and second engine data concentrators. Each of the first and second engine data concentrators include a processor module, a signal conditioning module coupled to the processor module, a data transfer module coupled to the processor module, and a data bus coupled between the first and second engine data concentrators and a hydro-mechanical unit (HMU).
    Type: Application
    Filed: November 26, 2007
    Publication date: December 17, 2009
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventors: Timothy D. Mahoney, Scot E. Griffith, Larry J. Yount, Richard F. Hess, Brendan Hall, Devesh Bhatt, William M. McMahon, John Teager, Philip E. Rose
  • Publication number: 20090152404
    Abstract: An aircraft flight control surface actuation control system includes an actuator control unit and a flight control module. The actuator control unit includes at least two independent actuator control channels to generate limited authority flight control surface actuator commands based on pilot inceptor position signals and flight control augmentation data. The flight control module supplies the flight control augmentation data to each of the independent actuator control channels, determines operability of each of the actuator control channels and, based on the determined operability of each independent actuator control channel, selectively prevents one of the independent actuator control channels from supplying the limited authority flight control surface actuator commands. The flight control module may also generate full authority flight control surface actuator commands for supply to flight control surface actuators.
    Type: Application
    Filed: December 17, 2007
    Publication date: June 18, 2009
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventors: Larry J. Yount, Gerald B. Kelley, Kent A. Stange, Welsh C. Pond
  • Publication number: 20090082913
    Abstract: A fly-by-wire (FBW) system (104) is coupled to cockpit controls (102) of an aircraft for controlling the aircraft, and an automatic flight control system (AFCS) (108) is coupled to the FBW system for maintaining the aircraft in stable flight. An unauthorized-flight detector (110) is coupled to the FBW system and coupled to the AFCS, and is arranged to carry out (306) a transfer of partial control of the aircraft from the cockpit controls to the FBW system and the AFCS, in response to a predetermined event.
    Type: Application
    Filed: August 21, 2008
    Publication date: March 26, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Larry J. Yount, Joseph W. Jackson, Eric L. Christianson, Arthur D. Beutler
  • Patent number: 7475851
    Abstract: A fly-by-wire (FBW) system (104) is coupled to cockpit controls (102) of an aircraft for controlling the aircraft, and an automatic flight control system (AFCS) (108) is coupled to the FBW system for maintaining the aircraft in stable flight. An unauthorized-flight detector (110) is coupled to the FBW system and coupled to the AFCS, and is arranged to carry out (306) a transfer of control of the FBW system from the cockpit controls to the AFCS, in response to a predetermined event.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: January 13, 2009
    Assignee: Honeywell International Inc.
    Inventors: Larry J. Yount, Joseph W. Jackson, Eric L. Christianson, Arthur D. Beutler
  • Publication number: 20080203224
    Abstract: An aircraft flight surface control system and method simultaneously provides the benefits of both an active/active system architecture and in active/standby system architecture. The system is preferably implemented using hydraulic actuator assemblies and electromechanical actuator assemblies coupled to the same flight control surface. During normal system operations the electromechanical actuator assemblies are energized to supply a relatively minimal force to associated flight control surfaces. In effect, the electromechanical actuators, although energized, may be pulled along by the associated hydraulic actuator assemblies, until needed. Thus, the electromechanical actuator assemblies are controlled in a manner that closely resembles the active/standby architecture.
    Type: Application
    Filed: February 27, 2007
    Publication date: August 28, 2008
    Inventors: Larry J. Yount, Casey Hanlon, Andy Johnson
  • Patent number: 7182296
    Abstract: Methods and apparatus are provided for more reliably transferring operational control for various aircraft flight control surfaces from a first sub-system to a second sub-system. The present invention provides an Actuator Control Electronics (ACE) wrap-back module that monitors the output of the normal mode control module and switches control to the direct control module based upon the detection of an error condition. The switching function is controlled by a monitoring system that monitors the output from an integrated heartbeat module that emits a pre-programmed signal. The pre-programmed signal is encoded and sent over a communication bus where it is then decoded and validated by comparing the decoded signal to the expected results. Any irregularity in the heartbeat signal automatically triggers a change of control from the first flight control sub-system to the second flight control sub-system.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: February 27, 2007
    Assignee: Honeywell International, Inc.
    Inventors: Larry J. Yount, Dale D. Davidson, William F. Potter, Alan B. Hickman, Willard A. Blevins
  • Publication number: 20040217232
    Abstract: A fly-by-wire (FBW) system (104) is coupled to cockpit controls (102) of an aircraft for controlling the aircraft, and an automatic flight control system (AFCS) (108) is coupled to the FBW system for maintaining the aircraft in stable flight. An unauthorized-flight detector (110) is coupled to the FBW system and coupled to the AFCS, and is arranged to carry out (306) a transfer of control of the FBW system from the cockpit controls to the AFCS, in response to a predetermined event.
    Type: Application
    Filed: April 16, 2003
    Publication date: November 4, 2004
    Inventors: Larry J. Yount, Joseph W. Jackson, Eric L. Christianson, Arthur D. Beutler
  • Patent number: 6367031
    Abstract: The present invention, Layered Detection Architecture (“LDA”) is useful to enhance the detection of command control processing errors and also facilitate survivorship among properly functioning flight critical Core Processing Modules (“CPM”) while eliminating faulty CPM responsible for processing execution errors. LDA is contemplated for use with lock-step execution verification schemes and other result comparison command-processing error detection methods also implementing redundant independent processing units.
    Type: Grant
    Filed: December 17, 1998
    Date of Patent: April 2, 2002
    Assignee: Honeywell International Inc.
    Inventor: Larry J. Yount
  • Patent number: 5694014
    Abstract: A hand controller system which provides the proper feel of the hand controller during aircraft operation. In both non-redundant and redundant embodiments, torque, and position measurements are made from the hand controller movements and processed to provide a feedback to a control motor in mechanical connection with the hand controller. The system includes self-monitoring of the motor, as well as the signals provided by the position, and torque sensors. Connections are provided from the hand controller system so that cross-coupling may be provided between the pilot's and copilot's hand controllers.
    Type: Grant
    Filed: August 22, 1995
    Date of Patent: December 2, 1997
    Assignee: Honeywell Inc.
    Inventors: Jeffrey W. Hegg, Larry J. Yount, William F. Potter
  • Patent number: 5550736
    Abstract: A flight critical computer system for an aircraft includes dual independent lanes having two processors in each lane. The first lane has a primary processor and a redundant processor and provides a first command signal. The second lane includes a primary processor and a redundant processor and provides a second command signal. A first monitor compares the primary processor of the first lane with the primary processor of the second lane and generates first comparison signals as a function of disagreement therebetween. A second monitor compares the output signals of the redundant processor of the second lane and the primary processor of the first lane and generates second comparison signals as a function of disagreement therebetween. A third monitor compares the primary processor of the second lane with the redundant processor of the first lane and generates third comparison signals as a function of disagreement therebetween.
    Type: Grant
    Filed: April 27, 1993
    Date of Patent: August 27, 1996
    Assignee: Honeywell Inc.
    Inventors: Rick H. Hay, Clarence S. Smith, Robert D. Girts, Larry J. Yount
  • Patent number: 5313625
    Abstract: In a computer system having fault recoverable capability, there is included a first and second data processing unit (DPU), wherein each of the first and second DPU is executing the same task essentially in parallel. Each DPU comprises a processor, a memory and a protected memory. The protected memory stores system data, such that the system data stored in the protected memory is immune from transient conditions. Also included is a monitor, which is operatively connected to the monitor of the other DPU. The monitor detects the occurrence of an upset to reinitialize the DPU, the DPU being reinitialized to a condition just prior to the occurrence of the upset thus avoiding utilization of any potentially erroneous data, and thereby permitting the DPU to return to its normal processing with valid data.
    Type: Grant
    Filed: July 30, 1991
    Date of Patent: May 17, 1994
    Assignee: Honeywell Inc.
    Inventors: Richard F. Hess, Larry J. Yount