Patents by Inventor Lars Ivar Samuelson

Lars Ivar Samuelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7745813
    Abstract: A resonant tunneling diode, and other one dimensional electronic, photonic structures, and electromechanical MEMS devices, are formed as a heterostructure in a nanowhisker by forming length segments of the whisker with different materials having different band gaps.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: June 29, 2010
    Assignee: QuNano AB
    Inventors: Lars Ivar Samuelson, Bjorn Jonas Ohlsson
  • Publication number: 20100151661
    Abstract: A method of forming a nanostructure having the form of a tree, comprises a first stage and a second stage. The first stage includes providing one or more catalytic particles on a substrate surface, and growing a first nanowhisker via each catalytic particle. The second stage includes providing, on the periphery of each first nanowhisker, one or more second catalytic particles, and growing, from each second catalytic particle, a second nanowhisker extending transversely from the periphery of the respective first nanowhisker. Further stages may be included to grow one or more further nanowhiskers extending from the nanowhisker(s) of the preceding stage. Heterostructures may be created within the nanowhiskers. Such nanostructures may form the components of a solar cell array or a light emitting flat panel, where the nanowhiskers are formed of a photosensitive material.
    Type: Application
    Filed: February 12, 2010
    Publication date: June 17, 2010
    Inventors: Lars Ivar Samuelson, Knut Wilfried Deppert
  • Patent number: 7682943
    Abstract: A resonant tunneling diode, and other one dimensional electronic, photonic structures, and electromechanical MEMS devices, are formed as a heterostructure in a nanowhisker by forming length segments of the whisker with different materials having different band gaps.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: March 23, 2010
    Assignee: QuNano AB
    Inventors: Lars Ivar Samuelson, Bjorn Jonas Ohlsson
  • Patent number: 7662706
    Abstract: A method of forming a nanostructure having the form of a tree, comprises a first stage and a second stage. The first stage includes providing one or more catalytic particles on a substrate surface, and growing a first nanowhisker via each catalytic particle. The second stage includes providing, on the periphery of each first nanowhisker, one or more second catalytic particles, and growing, from each second catalytic particle, a second nanowhisker extending transversely from the periphery of the respective first nanowhisker. Further stages may be included to grow one or more further nanowhiskers extending from the nanowhisker(s) of the preceding stage. Heterostructures may be created within the nanowhiskers. Such nanostructures may form the components of a solar cell array or a light emitting flat panel, where the nanowhiskers are formed of a photosensitive material.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: February 16, 2010
    Assignee: QuNano AB
    Inventors: Lars Ivar Samuelson, Knut Wilfried Deppert
  • Publication number: 20100035412
    Abstract: A nanoengineered structure comprising an array of more than about 1000 nanowhiskers on a substrate in a predetermined spatial configuration, for use for example as a photonic band gap array, wherein each nanowhisker is sited within a distance from a predetermined site not greater than about 20% of its distance from its nearest neighbour. To produce the array, an array of masses of a catalytic material are positioned on the surface, heat is applied and materials in gaseous form are introduced such as to create a catalytic seed particle from each mass, and to grow, from the catalytic seed particle, epitaxially, a nanowhisker of a predetermined material, and wherein each mass upon melting, retains approximately the same interface with the substrate surface such that forces causing the mass to migrate across said surface are less than a holding force across a wetted interface on the substrate surface.
    Type: Application
    Filed: October 6, 2009
    Publication date: February 11, 2010
    Inventors: Lars Ivar Samuelson, Bjorn Jonas Ohlsson, Thomas M.I. Martensson
  • Patent number: 7608147
    Abstract: A nanoengineered structure comprising an array of more than about 1000 nanowhiskers on a substrate in a predetermined spatial configuration, for use for example as a photonic band gap array, wherein each nanowhisker is sited within a distance from a predetermined site not greater than about 20% of its distance from its nearest neighbor. To produce the array, an array of masses of a catalytic material are positioned on the surface, heat is applied and materials in gaseous form are introduced such as to create a catalytic seed particle from each mass, and to grow, from the catalytic seed particle, epitaxially, a nanowhisker of a predetermined material, and wherein each mass upon melting, retains approximately the same interface with the substrate surface such that forces causing the mass to migrate across said surface are less than a holding force across a wetted interface on the substrate surface.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: October 27, 2009
    Assignee: QuNano AB
    Inventors: Lars Ivar Samuelson, Bjorn Jonas Ohlsson, Thomas M. I. Martensson
  • Publication number: 20090253250
    Abstract: A method for forming a nanowhisker of, e.g., a III-V semiconductor material on a silicon substrate, comprises: preparing a surface of the silicon substrate with measures including passivating the substrate surface by HF etching, so that the substrate surface is essentially atomically flat. Catalytic particles on the substrate surface are deposited from an aerosol; the substrate is annealed; and gases for a MOVPE process are introduced into the atmosphere surrounding the substrate, so that nanowhiskers are grown by the VLS mechanism. In the grown nanowhisker, the crystal directions of the substrate are transferred to the epitaxial crystal planes at the base of the nanowhisker and adjacent the substrate surface.
    Type: Application
    Filed: April 14, 2009
    Publication date: October 8, 2009
    Inventors: Lars Ivar SAMUELSON, Thomas M. I. Martensson
  • Patent number: 7528002
    Abstract: A method for forming a nanowhisker of, e.g., a III-V semiconductor material on a silicon substrate, comprises: preparing a surface of the silicon substrate with measures including passivating the substrate surface by HF etching, so that the substrate surface is essentially atomically flat. Catalytic particles on the substrate surface are deposited from an aerosol; the substrate is annealed; and gases for a MOVPE process are introduced into the atmosphere surrounding the substrate, so that nanowhiskers are grown by the VLS mechanism. In the grown nanowhisker, the crystal directions of the substrate are transferred to the epitaxial crystal planes at the base of the nanowhisker and adjacent the substrate surface.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: May 5, 2009
    Assignee: QuNano AB
    Inventors: Lars Ivar Samuelson, Thomas M. I. Martensson
  • Publication number: 20090014711
    Abstract: Nano-engineered structures are disclosed, incorporating nanowhiskers of high mobility conductivity and incorporating pn junctions. In one embodiment, a nanowhisker of a first semiconducting material has a first band gap, and an enclosure comprising at least one second material with a second band gap encloses said nanoelement along at least part of its length, the second material being doped to provide opposite conductivity type charge carriers in respective first and second regions along the length of the of the nanowhisker, whereby to create in the nanowhisker by transfer of charge carriers into the nanowhisker, corresponding first and second regions of opposite conductivity type charge carriers with a region depleted of free carriers therebetween. The doping of the enclosure material may be degenerate so as to create within the nanowhisker adjacent segments having very heavy modulation doping of opposite conductivity type analogous to the heavily doped regions of an Esaki diode.
    Type: Application
    Filed: August 22, 2008
    Publication date: January 15, 2009
    Inventors: Lars Ivar Samuelson, Bjorn Jonas Ohlsson, Lars-Ake Ledebo
  • Patent number: 7432522
    Abstract: Nano-engineered structures are disclosed, incorporating nanowhiskers of high mobility conductivity and incorporating pn junctions. In one embodiment, a nanowhisker of a first semiconducting material has a first band gap, and an enclosure comprising at least one second material with a second band gap encloses said nanoelement along at least part of its length, the second material being doped to provide opposite conductivity type charge carriers in respective first and second regions along the length of the of the nanowhisker, whereby to create in the nanowhisker by transfer of charge carriers into the nanowhisker, corresponding first and second regions of opposite conductivity type charge carriers with a region depleted of free carriers therebetween. The doping of the enclosure material may be degenerate so as to create within the nanowhisker adjacent segments having very heavy modulation doping of opposite conductivity type analogous to the heavily doped regions of an Esaki diode.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: October 7, 2008
    Assignee: QuNano AB
    Inventors: Lars Ivar Samuelson, Bjorn Jonas Ohlsson, Lars-Åke Ledebo
  • Publication number: 20080188064
    Abstract: A resonant tunneling diode, and other one dimensional electronic, photonic structures, and electromechanical MEMS devices, are formed as a heterostructure in a nanowhisker by forming length segments of the whisker with different materials having different band gaps.
    Type: Application
    Filed: October 5, 2007
    Publication date: August 7, 2008
    Inventors: Lars Ivar SAMUELSON, Bjorn Jonas Ohlsson
  • Publication number: 20080149944
    Abstract: The present invention relates to light emitting diodes, LEDs. In particular the invention relates to a LED comprising a nanowire as an active component. The nanostructured LED according to the embodiments of the invention comprises a substrate and at an upstanding nanowire protruding from the substrate. A pn-junction giving an active region to produce light is present within the structure. The nanowire, or at least a part of the nanowire, forms a wave-guiding section directing at least a portion of the light produced in the active region in a direction given by the nanowire.
    Type: Application
    Filed: June 15, 2007
    Publication date: June 26, 2008
    Inventors: Lars Ivar Samuelson, Bo Pedersen
  • Publication number: 20080149914
    Abstract: The present invention relates to semiconductor devices comprising semiconductor nanoelements. In particular the invention relates to devices having a volume element having a larger diameter than the nanoelement arranged in epitaxial connection to the nanoelement. The volume element is being doped in order to provide a high charge carrier injection into the nanoelement and a low access resistance in an electrical connection. The nanoelement may be upstanding from a semiconductor substrate. A concentric layer of low resistivity material forms on the volume element forms a contact.
    Type: Application
    Filed: June 15, 2007
    Publication date: June 26, 2008
    Inventors: Lars Ivar Samuelson, Patrik Svensson, Jonas Ohlsson, Truls Lowgren
  • Publication number: 20080142784
    Abstract: A resonant tunneling diode, and other one dimensional electronic, photonic structures, and electromechanical MEMS devices, are formed as a heterostructure in a nanowhisker by forming length segments of the whisker with different materials having different band gaps.
    Type: Application
    Filed: December 31, 2007
    Publication date: June 19, 2008
    Inventors: Lars Ivar Samuelson, Bjorn Jonas Ohlsson
  • Publication number: 20080142926
    Abstract: Nanowhiskers are grown in a non-preferential growth direction by regulation of nucleation conditions to inhibit growth in a preferential direction. In a preferred implementation, <001> III-V semiconductor nanowhiskers are grown on an (001) III-V semiconductor substrate surface by effectively inhibiting growth in the preferential <111>B direction. As one example, <001> InP nano-wires were grown by metal-organic vapor phase epitaxy directly on (001) InP substrates. Characterization by scanning electron microscopy and transmission electron microscopy revealed wires with nearly square cross sections and a perfect zincblende crystalline structure that is free of stacking faults.
    Type: Application
    Filed: January 4, 2008
    Publication date: June 19, 2008
    Inventors: Werner Seifert, Lars Ivar Samuelson, Bjorn Jonas Ohlsson, Lars Magnus Borgstrom
  • Patent number: 7354850
    Abstract: Nanowhiskers are grown in a non-preferential growth direction by regulation of nucleation conditions to inhibit growth in a preferential direction. In a preferred implementation, <001> III-V semiconductor nanowhiskers are grown on an (001) III-V semiconductor substrate surface by effectively inhibiting growth in the preferential <111>B direction. As one example, <001> InP nano-wires were grown by metal-organic vapor phase epitaxy directly on (001) InP substrates. Characterization by scanning electron microscopy and transmission electron microscopy revealed wires with nearly square cross sections and a perfect zincblende crystalline structure that is free of stacking faults.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: April 8, 2008
    Assignee: QuNano AB
    Inventors: Werner Seifert, Lars Ivar Samuelson, Björn Jonas Ohlsson, Lars Magnus Borgström
  • Patent number: 7335908
    Abstract: A resonant tunneling diode, and other one dimensional electronic, photonic structures, and electromechanical MEMS devices, are formed as a heterostructure in a nanowhisker by forming length segments of the whisker with different materials having different band gaps.
    Type: Grant
    Filed: July 7, 2003
    Date of Patent: February 26, 2008
    Assignee: QuNano AB
    Inventors: Lars Ivar Samuelson, Bjorn Jonas Ohlsson
  • Patent number: 7223444
    Abstract: A fast method of creating nanostructures comprising the steps of forming one or more electrically-charged regions (5) of predetermined shape on a surface (1) of a first material, by contacting the regions with a stamp for transferring electric charge, and providing electrically charged nanoparticles (7) of a second material, and permitting the particles to flow in the vicinity of the regions, to be deposited on the regions.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: May 29, 2007
    Assignee: QuNano AB
    Inventors: Knut Wilfried Deppert, Carl Martin Hall Magnusson, Lars Ivar Samuelson, Thomas Johannes Krinke
  • Publication number: 20040183064
    Abstract: A single electron tunnelling device is formed by positioning between first and second electrodes a particle formed of a material having a first conductivity characteristic having a surface layer of a material of a second conductivity characteristic, the thickness of said layer being sufficiently small to support quantum mechanical tunnelling therethrough.
    Type: Application
    Filed: April 1, 2004
    Publication date: September 23, 2004
    Applicant: BTG International Limited
    Inventors: Lars Ivar Samuelson, Knut Wilfried Deppert
  • Patent number: 6744065
    Abstract: A single electron tunnelling device is formed by positioning between first and second electrodes a particle formed of a material having a first conductivity characteristic having a surface layer of a material of a second conductivity characteristic, the thickness of said layer being sufficiently small to support quantum mechanical tunnelling therethrough.
    Type: Grant
    Filed: May 2, 2000
    Date of Patent: June 1, 2004
    Assignee: BTG International Limited
    Inventors: Lars Ivar Samuelson, Knut Wilfried Deppert