Patents by Inventor Laszlo Lipcsei

Laszlo Lipcsei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11742767
    Abstract: A flux-corrected switching power converter includes a first transformer, a first switching stage, a controller, and a flux correction current source. The first transformer includes a first magnetic core, a first primary winding, and a first secondary winding, and the first switching stage is electrically coupled to the first secondary winding. The controller is configured to control switching of at least the first switching stage. The flux correction current source is electrically coupled to the first primary winding, and the flux correction current source is configured to inject current into the first primary winding to at least partially cancel magnetic flux in the first magnetic core that is generated by current flowing through the first secondary winding.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: August 29, 2023
    Assignee: Maxim Integrated Products, Inc.
    Inventor: Laszlo Lipcsei
  • Patent number: 11742764
    Abstract: A resonant power converter includes a capacitive divider circuit, a coupled inductor, and N switching stages, where N is an integer greater than two. The coupled inductor includes N windings, and total leakage inductance of the coupled inductor and equivalent capacitance of the capacitive divider circuit collectively form a resonant tank circuit of the resonant power converter. Each switching stage is electrically coupled between a respective one of the N windings of the coupled inductor and the capacitive divider circuit. The capacitive divider circuit may include one or more resonant capacitors.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: August 29, 2023
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Angelo Genova, Laszlo Lipcsei, Alexandr Ikriannikov
  • Publication number: 20220407466
    Abstract: A tracking power supply includes a power conversion subsystem and one or more tracking subsystems. The power conversion subsystem is configured to generate N power rails, where N is an integer greater than one. Each tracking subsystem includes a switching network and a controller. The switching network is electrically coupled between each of the N power rails and a tracking power rail of the tracking power supply. The controller is configured to control operation of the switching network according to a tracking signal associated with a load powered by the tracking power supply, such that a voltage at the tracking power rail is one of two or more values, as determined at least partially based on the tracking signal. The controller is further configured to adjust voltage of at least one of the N power rails.
    Type: Application
    Filed: June 13, 2022
    Publication date: December 22, 2022
    Inventors: Gaoling Zou, Alberto Giovanni Viviani, Alexandr Ikriannikov, Laszlo Lipcsei
  • Publication number: 20220247321
    Abstract: A resonant power converter includes a capacitive divider circuit, a coupled inductor, and N switching stages, where N is an integer greater than two. The coupled inductor includes N windings, and total leakage inductance of the coupled inductor and equivalent capacitance of the capacitive divider circuit collectively form a resonant tank circuit of the resonant power converter. Each switching stage is electrically coupled between a respective one of the N windings of the coupled inductor and the capacitive divider circuit. The capacitive divider circuit may include one or more resonant capacitors.
    Type: Application
    Filed: January 14, 2022
    Publication date: August 4, 2022
    Inventors: Angelo Genova, Laszlo Lipcsei, Alexandr Ikriannikov
  • Publication number: 20210408925
    Abstract: A flux-corrected switching power converter includes a first transformer, a first switching stage, a controller, and a flux correction current source. The first transformer includes a first magnetic core, a first primary winding, and a first secondary winding, and the first switching stage is electrically coupled to the first secondary winding. The controller is configured to control switching of at least the first switching stage. The flux correction current source is electrically coupled to the first primary winding, and the flux correction current source is configured to inject current into the first primary winding to at least partially cancel magnetic flux in the first magnetic core that is generated by current flowing through the first secondary winding.
    Type: Application
    Filed: June 28, 2021
    Publication date: December 30, 2021
    Inventor: Laszlo Lipcsei
  • Patent number: 10153700
    Abstract: A power converter for converting input power to output power includes a first transformer circuit, a second transformer circuit, and balance circuitry. The first transformer circuit includes a first primary winding for receiving a first part of the input power and a first secondary winding for generating a first part of the output power. The second transformer circuit includes a second primary winding for receiving a second part of the input power and a second secondary winding for generating a second part of the output power. The balance circuitry is coupled to a first terminal of the first secondary winding and a second terminal of the second secondary winding, and operable for balancing the first and second parts of the output power by passing a signal between the first and second terminals. The first and second terminals have the same polarity.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: December 11, 2018
    Assignee: O2Micro, Inc.
    Inventors: Catalin Popovici, Alin Gherghescu, Laszlo Lipcsei
  • Publication number: 20180062522
    Abstract: A power converter for converting input power to output power includes a first transformer circuit, a second transformer circuit, and balance circuitry. The first transformer circuit includes a first primary winding for receiving a first part of the input power and a first secondary winding for generating a first part of the output power. The second transformer circuit includes a second primary winding for receiving a second part of the input power and a second secondary winding for generating a second part of the output power. The balance circuitry is coupled to a first terminal of the first secondary winding and a second terminal of the second secondary winding, and operable for balancing the first and second parts of the output power by passing a signal between the first and second terminals. The first and second terminals have the same polarity.
    Type: Application
    Filed: October 24, 2017
    Publication date: March 1, 2018
    Inventors: Catalin POPOVICI, Alin GHERGHESCU, Laszlo LIPCSEI
  • Patent number: 9819271
    Abstract: A power converter for converting input power to output power includes a first transformer circuit, a second transformer circuit, and balance circuitry. The first transformer circuit includes a first primary winding for receiving a first part of the input power and a first secondary winding for generating a first part of the output power. The second transformer circuit includes a second primary winding for receiving a second part of the input power and a second secondary winding for generating a second part of the output power. The balance circuitry is coupled to a first terminal of the first secondary winding and a second terminal of the second secondary winding, and operable for balancing the first and second parts of the output power by passing a signal between the first and second terminals. The first and second terminals have the same polarity.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: November 14, 2017
    Assignee: O2Micro, Inc.
    Inventors: Catalin Popovici, Alin Gherghescu, Laszlo Lipcsei
  • Patent number: 9766295
    Abstract: In an analog-to-frequency converting circuit, a set of switches receive a first sense signal indicative of a current and provides a second sense signal that alternates between an original version of the first sense signal and a reversed version of the first sense signal, under control of a switching signal. An integral comparing circuit integrates the second sense signal to generate an integral value and generates a train of trigger signals. Each trigger signal is generated when the integral value reaches a preset reference. A compensation circuit compensates for the integral value with a predetermined value in response to each trigger signal. A control circuit generates the switching signal such that a time interval during which the second sense signal is the original version and a time interval during which the second sense signal is the reversed version are substantially the same.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: September 19, 2017
    Assignee: O2Micro Inc.
    Inventors: Oleksandr Kokorin, Laszlo Lipcsei
  • Patent number: 9704858
    Abstract: An integrated device includes a semiconductor well formed in an epitaxial layer, and a guard ring formed in the epitaxial layer and surrounding the semiconductor well. The semiconductor well and the guard ring include a type of semiconductor different from that of the epitaxial layer. The integrated device also includes an insulating layer formed atop the guard ring, and multiple gate electrodes formed on a top surface of the insulating layer, overlapping the guard ring and surrounding the semiconductor well. The gate electrodes include a first gate electrode and a second gate electrode separated by a gap. An intersecting line between the top surface of the insulating layer and a side wall of the first gate electrode partially overlaps an area that is defined based on an intersecting line between the top surface of the insulating layer and a side wall of the second gate electrode above the guard ring.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: July 11, 2017
    Assignee: O2Micro, Inc.
    Inventors: Hamilton Lu, Laszlo Lipcsei
  • Patent number: 9660473
    Abstract: A DC/DC converter converts an input DC voltage to an output DC voltage and charges a battery. The DC/DC converter includes: a DC/DC controller, operable for generating a driving signal according to a target value for the output voltage and a first detection signal indicative of the output voltage level to control switching circuitry and to adjust the output voltage level; and a battery charging controller, coupled to the DC/DC controller and the battery, that is operable for receiving the first detection signal indicative of the output voltage level and a second detection signal indicative of a battery voltage level, and for generating a loop control signal according to the first detection signal and the second detection signal to adjust the target value for the output voltage, wherein the difference between the first detection signal and the second detection signal indicates the amount of a battery charging current.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: May 23, 2017
    Assignee: O2Micro Inc
    Inventors: Gang Li, Guoyong Guo, Laszlo Lipcsei
  • Publication number: 20170012040
    Abstract: An integrated device includes a semiconductor well formed in an epitaxial layer, and a guard ring formed in the epitaxial layer and surrounding the semiconductor well. The semiconductor well and the guard ring include a type of semiconductor different from that of the epitaxial layer. The integrated device also includes an insulating layer formed atop the guard ring, and multiple gate electrodes formed on a top surface of the insulating layer, overlapping the guard ring and surrounding the semiconductor well. The gate electrodes include a first gate electrode and a second gate electrode separated by a gap. An intersecting line between the top surface of the insulating layer and a side wall of the first gate electrode partially overlaps an area that is defined based on an intersecting line between the top surface of the insulating layer and a side wall of the second gate electrode above the guard ring.
    Type: Application
    Filed: July 9, 2015
    Publication date: January 12, 2017
    Inventors: Hamilton LU, Laszlo LIPCSEI
  • Patent number: 9397579
    Abstract: A controller for a DC/DC converter controls a first, second, third, and fourth switches according to pulse signals generated alternately. The controller turns off the third switch on detection of a first edge of a first pulse signal, turns on the first switch after a delay from the detection of the first edge, turns off the fourth switch on detection of a second edge of the first pulse signal, turns on the second switch after a delay from the detection of the second edge, turns off the first switch on detection of a third edge of a second pulse signal, turns on the third switch after a delay from the detection of the third edge, turns off the second switch on detection of a fourth edge of the second pulse signal, and turns on the fourth switch after a delay from the detection of the fourth edge.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: July 19, 2016
    Assignee: O2Micro Inc
    Inventors: Catalin Popovici, Alin Gherghescu, Laszlo Lipcsei
  • Publication number: 20160141892
    Abstract: A DC/DC converter converts an input DC voltage to an output DC voltage and charges a battery. The DC/DC converter includes: a DC/DC controller, operable for generating a driving signal according to a target value for the output voltage and a first detection signal indicative of the output voltage level to control switching circuitry and to adjust the output voltage level; and a battery charging controller, coupled to the DC/DC controller and the battery, that is operable for receiving the first detection signal indicative of the output voltage level and a second detection signal indicative of a battery voltage level, and for generating a loop control signal according to the first detection signal and the second detection signal to adjust the target value for the output voltage, wherein the difference between the first detection signal and the second detection signal indicates the amount of a battery charging current.
    Type: Application
    Filed: November 17, 2014
    Publication date: May 19, 2016
    Inventors: Gang LI, Guoyong GUO, Laszlo LIPCSEI
  • Publication number: 20160069960
    Abstract: In an analog-to-frequency converting circuit, a set of switches receive a first sense signal indicative of a current and provides a second sense signal that alternates between an original version of the first sense signal and a reversed version of the first sense signal, under control of a switching signal. An integral comparing circuit integrates the second sense signal to generate an integral value and generates a train of trigger signals. Each trigger signal is generated when the integral value reaches a preset reference. A compensation circuit compensates for the integral value with a predetermined value in response to each trigger signal. A control circuit generates the switching signal such that a time interval during which the second sense signal is the original version and a time interval during which the second sense signal is the reversed version are substantially the same.
    Type: Application
    Filed: September 10, 2014
    Publication date: March 10, 2016
    Inventors: Oleksandr KOKORIN, Laszlo LIPCSEI
  • Patent number: 9106134
    Abstract: A power transfer device includes an input terminal, an output terminal, a control unit, and a drive unit. The input terminal can receive an input voltage. The output terminal can provide an output voltage. The control unit can control a switch between the input and output terminals to adjust the output voltage according to the input voltage and a reference voltage, wherein said control unit is deactivated if the reference voltage reaches the input voltage. The drive unit can connect the control unit and the switch if the control unit is activated, and can maintain the output voltage at or near the input voltage if the control unit is deactivated.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: August 11, 2015
    Assignee: O2Micro, Inc.
    Inventors: Guoyong Guo, Laszlo Lipcsei
  • Patent number: 9083237
    Abstract: A converter circuit includes a converter and a controller. The converter converts an input voltage to an output voltage. The controller receives a reference voltage, generates a slew voltage having a substantially constant first slew rate if the reference voltage changes from a first level to a second level, and controls the converter based on the slew voltage to cause the output voltage to change from a third level to a fourth level at a substantially constant second slew rate.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: July 14, 2015
    Assignee: O2Micro, Inc.
    Inventors: Serban Mihai Popescu, Laszlo Lipcsei, Marius Padure, Guoyong Guo
  • Publication number: 20150188411
    Abstract: In an output circuit, a rectifying circuit outputs a rectified signal at an output node. The rectified signal has a rising edge and a falling edge. An energy storage component is coupled to the output node. A controllable path, coupled to the energy storage component, can be turned on if a voltage drop of the controllable path is greater than a voltage threshold. The controllable path can also be turned on in response to a turn-on signal. A control circuit, coupled to the controllable path, generates the turn-on signal subsequent to the rising edge of the rectified signal, and terminates the turn-on signal when a predetermined time interval expires subsequent to the generating of the turn-on signal and prior to the falling edge of the rectified signal.
    Type: Application
    Filed: December 27, 2013
    Publication date: July 2, 2015
    Applicant: O2Micro Inc
    Inventors: Laszlo LIPCSEI, Catalin POPOVICI, Sorin HORNET, Alin GHERGHESCU
  • Patent number: 9059632
    Abstract: A controller includes a ramp signal generator and control circuitry coupled to the ramp signal generator. The ramp signal generator provides a control current through a resistive component to control energy stored in a first energy storage component. The ramp signal generator further generates a ramp signal based on the energy stored in the first energy storage component. The control circuitry adjusts a voltage at one end of the resistive component thereby controlling the control current to indicate a voltage across a second energy storage component. The control circuitry further controls a current through the second energy storage component within a predetermined range based on the ramp signal.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: June 16, 2015
    Assignee: O2Micro, Inc.
    Inventors: Gang Li, Fengjiang Zhang, Laszlo Lipcsei
  • Publication number: 20150092451
    Abstract: A power converter for converting input power to output power includes a first transformer circuit, a second transformer circuit, and balance circuitry. The first transformer circuit includes a first primary winding for receiving a first part of the input power and a first secondary winding for generating a first part of the output power. The second transformer circuit includes a second primary winding for receiving a second part of the input power and a second secondary winding for generating a second part of the output power. The balance circuitry is coupled to a first terminal of the first secondary winding and a second terminal of the second secondary winding, and operable for balancing the first and second parts of the output power by passing a signal between the first and second terminals. The first and second terminals have the same polarity.
    Type: Application
    Filed: August 27, 2014
    Publication date: April 2, 2015
    Inventors: Catalin POPOVICI, Alin GHERGHESCU, Laszlo LIPCSEI