Patents by Inventor Laurent Clavelier

Laurent Clavelier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10290721
    Abstract: The invention provides a method of fabricating an electromechanical structure presenting a first substrate including a layer of monocrystalline material covered in a sacrificial layer that presents a free surface, the structure presenting a mechanical reinforcing pillar in the sacrificial layer, the method including etching a well region in the sacrificial layer to define a mechanical pillar; depositing a first functionalization layer of the first material to at least partially fill the well region and cover the free surface of the sacrificial layer around the well region; depositing a second material different from the first material for terminating the filling of the well region to thereby cover the first functionalization layer around the well region, planarizing the filler layer, the pillar being formed by the superposition of the first material and second material in the well region; and releasing the electromechanical structure by removing at least partially the sacrificial layer.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: May 14, 2019
    Assignee: Commissariat a L'Energie Atomique et aux Energies Alternatives
    Inventors: Vincent Larrey, Francois Perruchot, Bernard Diem, Laurent Clavelier, Philippe Robert
  • Patent number: 9106199
    Abstract: An acoustic wave device comprising at least one surface acoustic wave filter and one bulk acoustic wave filter, the device including, on a substrate comprising a second piezoelectric material: a stack of layers including a first metal layer and a layer of a first monocrystalline piezoelectric material, wherein the stack of layers is partially etched so as to define a first area in which the first and second piezoelectric materials are present and a second area in which the first piezoelectric material is absent; a second metallization at the first area for defining the bulk acoustic wave filter integrating the first piezoelectric material, and a third metallization at the second area for defining the surface acoustic wave filter integrating the second piezoelectric material.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: August 11, 2015
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Chrystel Deguet, Laurent Clavelier, Emmanuel Defay, Alexandre Reinhardt
  • Patent number: 8890111
    Abstract: A method for producing an emissive pixel screen includes forming an active pixel matrix along which an electrode forming layer runs and having pixels arranged according to a distribution, forming an anisotropic substrate that includes a set of light emitting diodes constituted by parallel nanowires and arranged in an insulating matrix transversely with respect to a substrate thickness and having a density higher than a density of the pixels irrespective of the pixel distribution, connecting the substrate to the active pixel matrix by connecting only sub-groups of the parallel nanowires by a first end to separate pixel electrodes defined in the electrode forming layer according to the distribution of the pixels in the matrix, and connecting the sub-groups, by another end, to a common electrode, and delimiting the sub-groups by rendering the nanowires of the substrate that are arranged between the sub-groups emissively inactive.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: November 18, 2014
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Francois Templier, Laurent Clavelier, Marc Rabarot
  • Patent number: 8866225
    Abstract: A field effect transistor including: a support layer, a plurality of active zones based on a semiconductor, each active zone configured to form a channel and arranged between two gates adjacent to each other and consecutive, the active zones and the gates being arranged on the support layer, each gate including a first face on the side of the support layer and a second face opposite the first face. The second face of a first of the two gates is electrically connected to a first electrical contact made on the second face of the first of the two gates, and the first face of a second of the two gates is electrically connected to a second electrical contact passing through the support layer. The gates of the transistor are not electrically connected to each other.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: October 21, 2014
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Frederic Mayer, Laurent Clavelier, Thierry Poiroux, Gerard Billiot
  • Patent number: 8853785
    Abstract: An integrated circuit including at least: a first MOS transistor; a second MOS transistor, arranged on the first MOS transistor, the second MOS transistor including a channel region in at least one semiconductor layer including two approximately parallel primary faces; a portion of at least one electrically conductive material electrically connected to a gate of the first transistor and arranged between the gate of the first transistor and the channel region of the second transistor; a dielectric layer arranged at least between the portion of the electrically conductive material and the channel region of the second transistor; and a section of the channel region of the second transistor in a plane parallel to the two primary faces of the semiconductor layer is included in a section of the portion of the electrically conductive material projected in said plane.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: October 7, 2014
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Emmanuel Augendre, Maud Vinet, Laurent Clavelier, Perrine Batude
  • Patent number: 8841202
    Abstract: A method of producing a hybrid substrate includes preparing a monocrystalline first substrate to obtain two surface portions. A temporary substrate is prepared including a mixed layer along which extends one surface portion and is formed of first areas and adjacent different second areas of amorphous material, the second areas forming at least part of the free surface of the first substrate. The first substrate is bonded to the other surface portion with the same crystal orientation as the first surface portion, by molecular bonding over at least the amorphous areas. A solid phase recrystallization of at least part of the amorphous areas according to the crystal orientation of the first substrate is selectively carried and the two surface portions are separated.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: September 23, 2014
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Franck Fournel, Thomas Signamarcheix, Laurent Clavelier, Chrystel Deguet
  • Patent number: 8809964
    Abstract: An electronic subassembly and associated method for the production of an electronic subassembly include a semiconductor layer bearing at least a first transistor having an adjustable threshold voltage is joined to an insulator layer and in which a first trapping zone is formed at a predetermined first depth. The first trapping zone extends at least beneath a channel of the first transistor and includes traps of greater density than the density of traps outside the first trapping zone, in such a way that the semiconductor layer and the first trapping zone are capacitively coupled. The useful information from the first transistor includes the charge transport within this transistor. A second trapping zone can be formed that extends at least beneath a channel of a second transistor that is formed by a second implantation with an energy and/or a dose and/or atoms that differ from those used to form the first trapping zone.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: August 19, 2014
    Assignee: Commissariat a l'Energie Atomique et Aux Energies Alternatives
    Inventors: François Andrieu, Emmanuel Augendre, Laurent Clavelier, Marek Kostrzewa
  • Patent number: 8766433
    Abstract: The invention relates to an electronic chip, comprising: a semiconductor substrate (6) having an active area (8) formed by at least one P doped region and at least one N doped region which form one or more P-N junctions through which most of the useful current flows when said electronic chip is in a conductive state, and at least one channel (44) through which a heat transport coolant can flow, the channel(s) passing through at least said P or N doped region of the active area. Each channel (44) is rectilinear and passes through the substrate (6) in a direction which is collinear with a direction F to the nearest ±45°, where the direction F is perpendicular to the plane of the substrate.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: July 1, 2014
    Assignees: Commissariat a l'energie atomique et aux energies alternatives, Centre National de la Recherche Scientifique, Institut Polytechnique de Grenoble
    Inventors: Yvan Avenas, Jean-Christophe Crebier, Julie Widiez, Laurent Clavelier, Kremena Vladimirova
  • Patent number: 8664084
    Abstract: A method for making a thin-film element includes epitaxially growing a first crystalline layer on a second crystalline layer of a support where the second crystalline layer is a material different from the first crystalline layer, the first crystalline layer having a thickness less than a critical thickness. A dielectric layer is formed on a side of the first crystalline layer opposite to the support to form a donor structure. The donor structure is assembled with a receiver layer and the support is removed.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: March 4, 2014
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Chrystel Deguet, Laurent Clavelier
  • Publication number: 20130273683
    Abstract: The invention provides a method of fabricating an electromechanical structure presenting a first substrate including a layer of monocrystalline material covered in a sacrificial layer that presents a free surface, the structure presenting a mechanical reinforcing pillar in the sacrificial layer, the method including etching a well region in the sacrificial layer to define a mechanical pillar; depositing a first functionalization layer of the first material to at least partially fill the well region and cover the free surface of the sacrificial layer around the well region; depositing a second material different from the first material for terminating the filling of the well region to thereby cover the first functionalization layer around the well region, planarizing the filler layer, the pillar being formed by the superposition of the first material and second material in the well region; and releasing the electromechanical structure by removing at least partially the sacrificial layer.
    Type: Application
    Filed: June 7, 2013
    Publication date: October 17, 2013
    Inventors: Vincent Larrey, Francois Perruchot, Bernard Diem, Laurent Clavelier, Philippe Robert
  • Patent number: 8501589
    Abstract: A process for forming a thin film of a given material includes providing a first substrate having, on the surface, an amorphous and/or polycrystalline film of the given material and a second substrate is bonded to the first substrate by hydrophobic direct bonding (molecular adhesion), the second substrate having a single-crystal reference film of a given crystallographic orientation on the surface thereof. A heat treatment is applied at least to the amorphous and/or polycrystalline film, where the heat treatment causes at least a portion of the amorphous and/or polycrystalline film to undergo solid-phase recrystallization along the crystallographic orientation of the reference film, where the reference film acts as a recrystallization seed. The at least partly recrystallized film is then separated from at least a portion of the reference film.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: August 6, 2013
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Franck Fournel, Thomas Signamarcheix, Laurent Clavelier, Chrystel Deguet
  • Publication number: 20130146955
    Abstract: The invention relates to an electronic chip, comprising: a semiconductor substrate (6) having an active area (8) formed by at least one P doped region and at least one N doped region which form one or more P-N junctions through which most of the useful current flows when said electronic chip is in a conductive state, and at least one channel (44) through which a heat transport coolant can flow, the channel(s) passing through at least said P or N doped region of the active area. Each channel (44) is rectilinear and passes through the substrate (6) in a direction which is collinear with a direction F to the nearest ±45°, where the direction F is perpendicular to the plane of the substrate.
    Type: Application
    Filed: May 31, 2011
    Publication date: June 13, 2013
    Applicant: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Yvan Avenas, Jean-Christophe Crebier, Julie Widiez, Laurent Clavelier, Kremena Vladimirova
  • Patent number: 8445122
    Abstract: A data storage medium includes a carrier substrate having an electrode layer on the surface thereof and a sensitive material layer extending along the electrode layeradapted to be locally modified between two electrical states by the action of a localized electric field. A reference plane extends globally parallel to the sensitive material layer and is configured to accommodate at least one element for application of an electrostatic field in combination with the electrode layer the electrode layer including a plurality of conductive portions having a dimension at most equal to 100 nm in at least one direction parallel to the reference plane and separated by at least one electrically insulative zone, where at least some of the conductive portions are electrically interconnected, the conductive portions defining data write/read locations within the sensitive material layer.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: May 21, 2013
    Assignees: Commissariat a l 'Energie Atomique, S.O.I. Tec Silicon on Insulator Technologies
    Inventors: Chrystel Deguet, Laurent Clavelier, Franck Fournel, Jean-Sebastien Moulet
  • Patent number: 8318555
    Abstract: A method for producing a hybrid substrate includes preparing a first substrate including a mixed layer and an underlying electrically insulating continuous layer, the mixed layer made up of first single-crystal areas and second adjacent amorphous areas, the second areas making up at least part of the free surface of the first substrate. A second substrate is bonded to the first substrate, the second substrate including on the surface thereof, a reference layer with a predetermined crystallographic orientation. The first substrate is bonded to the second substrate by hydrophobic molecular bonding of at least the amorphous areas. A recrystallization of at least part of the amorphous areas to solid phase is carried out according to the crystallographic orientation of the reference layer, and the two substrates are separated at the bonding interface.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: November 27, 2012
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Thomas Signamarcheix, Franck Fournel, Laurent Clavelier, Chrystel Deguet
  • Patent number: 8288250
    Abstract: A method for making a stack of at least two stages of circuits, each stage including a substrate and at least one component and metallic connections formed in or on this substrate, the assembly of a stage to be transferred onto a previous stage including: a) ionic implantation in the substrate of the stage to be transferred through at least part of the components, so as to form a weakened zone, b) formation of metallic connections of the components, c) transfer and assembly of some of this substrate onto the previous stage, and d) a step to thin the transferred part of the substrate by fracture along the weakened zone.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: October 16, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Laurent Clavelier, Chrystel Deguet, Patrick Leduc, Hubert Moriceau
  • Publication number: 20120205614
    Abstract: A method for producing an emissive pixel screen includes forming an active pixel matrix along which an electrode forming layer runs and having pixels arranged according to a distribution, forming an anisotropic substrate that includes a set of light emitting diodes constituted by parallel nanowires and arranged in an insulating matrix transversely with respect to a substrate thickness and having a density higher than a density of the pixels irrespective of the pixel distribution, connecting the substrate to the active pixel matrix by connecting only sub-groups of the parallel nanowires by a first end to separate pixel electrodes defined in the electrode forming layer according to the distribution of the pixels in the matrix, and connecting the sub-groups, by another end, to a common electrode, and delimiting the sub-groups by rendering the nanowires of the substrate that are arranged between the sub-groups emissively inactive.
    Type: Application
    Filed: October 19, 2010
    Publication date: August 16, 2012
    Applicant: Commissariat A L'Energie Atomique Et Aux Energies Alternatives
    Inventors: Francois Templier, Laurent Clavelier, Marc Rabarot
  • Publication number: 20120206216
    Abstract: An acoustic wave device comprising at least one surface acoustic wave filter and one bulk acoustic wave filter, the device including, on a substrate comprising a second piezoelectric material: a stack of layers including a first metal layer and a layer of a first monocrystalline piezoelectric material, wherein the stack of layers is partially etched so as to define a first area in which the first and second piezoelectric materials are present and a second area in which the first piezoelectric material is absent; a second metallization at the first area for defining the bulk acoustic wave filter integrating the first piezoelectric material, and a third metallization at the second area for defining the surface acoustic wave filter integrating the second piezoelectric material.
    Type: Application
    Filed: October 4, 2010
    Publication date: August 16, 2012
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Chrystel Deguet, Laurent Clavelier, Emmanuel Defay, Alexandre Reinhardt
  • Publication number: 20120187541
    Abstract: The invention provides methods and structures for reducing surface dislocations of a semiconductor layer, and can be employed during the epitaxial growth of semiconductor structures and layers comprising III-nitride materials. Embodiments involve the formation of a plurality of dislocation pit plugs to prevent propagation of dislocations from an underlying layer of material into a following semiconductor layer of material.
    Type: Application
    Filed: April 5, 2012
    Publication date: July 26, 2012
    Applicants: COMMISSARIAT A. L'ENERGIE ATOMIQUE, S.O.I.TEC SILICON ON INSULATOR TECHNOLOGIES, S.A.
    Inventors: Chantal Arena, Laurent Clavelier, Marc Rabarot
  • Patent number: 8183630
    Abstract: A microelectronic device including: a substrate surmounted by a stack of layers, at least one first transistor situated at a given level of said stack, at least one second transistor situated at a second level of said stack, above said given level, the first transistor including a gate electrode situated opposite a channel zone of the second transistor, the first transistor and the second transistor being separated by an insulating zone, and said insulating zone being constituted of several different dielectric materials include a first dielectric material and a second dielectric material.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: May 22, 2012
    Assignee: Commissariat A L'Energie Atomique
    Inventors: Perrine Batude, Laurent Clavelier, Marie-Anne Jaud, Olivier Thomas, Maud Vinet
  • Patent number: 8178427
    Abstract: The invention provides methods and structures for reducing surface dislocations of a semiconductor layer, and can be employed during the epitaxial growth of semiconductor structures and layers comprising III-nitride materials. Embodiments involve the formation of a plurality of dislocation pit plugs to prevent propagation of dislocations from an underlying layer of material into a following semiconductor layer of material.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: May 15, 2012
    Assignees: Commissariat a. l'Energie Atomique, S.O.I. Tec Silicon on Insulator Technologies, S.A.
    Inventors: Chantal Arena, Laurent Clavelier, Marc Rabarot