Patents by Inventor Laurent Guillot

Laurent Guillot has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170187372
    Abstract: A half-bridge circuit comprises a high supply contact and a low supply contact. A half-bridge output contact is connectable to drive a load and has a high-side between the high supply contact and the half-bridge output contact and a low-side between the half-bridge output contact and the low supply contact. A high-side bidirectional vertical power transistor at the high-side has a source connected to the high supply contact, and a low-side bidirectional vertical power transistor at the low-side, transistor has a source connected to the low supply contact. The high-side bidirectional vertical power transistor and low-side bidirectional vertical power transistor are connected in cascode and share a common drain connected to the half-bridge output contact, and are controllable to alternatingly allow a current flow from the high supply contact to the half-bridge output contact or from the half-bridge output contact to the low supply contact.
    Type: Application
    Filed: December 8, 2016
    Publication date: June 29, 2017
    Inventors: Philippe Perruchoud, Hubert Grandry, Laurent Guillot
  • Publication number: 20170149430
    Abstract: A packaged unidirectional power transistor comprises a package with a number of pins which provide a voltage and/or current connection between the outside and the inside. Inside the package, a bidirectional vertical power transistor is present with a controllable bidirectional current path, through a body of the bidirectional vertical power transistor, between a first current terminal of the bidirectional vertical power transistor connected to the first current pin and a second current terminal of the bidirectional vertical power transistor connected to the second current pin. A control circuit connects the control pin to the body terminal and the control terminal to drive the body and the control terminal, which allows current through the body in a forward direction, from the first current terminal to the second terminal, as a function of the control voltage, and to block current in a reverse direction regardless of the voltage.
    Type: Application
    Filed: April 19, 2016
    Publication date: May 25, 2017
    Inventors: Philippe Dupuy, Hubert Michel Grandy, Laurent Guillot
  • Patent number: 9620951
    Abstract: An overcurrent protection device comprises a maximum-allowed-current unit and a power switch. The maximum-allowed-current unit determines a maximum allowed current in real-time. The maximum allowed current is determined at least partially on an instantaneous level of a load voltage. The load voltage is a voltage across a load to be powered. The power switch is connectable with a switch input to a voltage supply and with a switch output to the load, for providing power to said load. The power switch has a conductive state and a nonconductive state, and is arranged to assume the nonconductive state in response to an indication that a current through the power switch is exceeding the maximum allowed current. A method of operating a power switch is also described.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: April 11, 2017
    Assignee: NXP USA, Inc.
    Inventors: Vasily Alekseyevich Syngaevskiy, Laurent Guillot, Philippe Rosado, Denis Sergeevich Shuvalov, Alexander Petrovich Soldatov
  • Patent number: 9071248
    Abstract: A circuit having an active mode and a sleep mode includes a power transistor, an amplifier, and a protection circuit. The power transistor has a first current electrode coupled to a first power supply terminal, a second current electrode as an output of the circuit for coupling to a load, and a control electrode, wherein the power transistor is characterized by having a threshold voltage and a leakage current, wherein the leakage current occurs between the control electrode and the first current electrode during the sleep mode. The amplifier has an output coupled to the control electrode of the power transistor that provides an active output during the active mode. The protection circuit detects the leakage current and prevents the leakage current from developing a voltage on the control electrode of the power transistor that exceeds the threshold voltage of the power transistor.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: June 30, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Thierry Sicard, Laurent Guillot
  • Patent number: 8974595
    Abstract: A dry composition including at least one binder and an oil comprising at least one compound of formula (I) below: wherein, Z represents an optionally substituted, linear or branched C4 to C28 alkyl radical or an optionally substituted, linear or branched C4 to C28 alkenyl radical, and R, R? and R? are identical or different and separately represent an optionally substituted, linear or branched hydrogen atom, hydroxyl radical, C1 to C12 alkyl radical, an optionally substituted, linear or branched C1 to C12 heteroalkyl radical, an optionally substituted, linear or branched C5 to C10 cycloalkyl radical, or an optionally substituted, linear or branched C6 to C18 aryl radical.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: March 10, 2015
    Assignee: Sika Technology AG
    Inventors: Christophe Guyot, Laurent Guillot
  • Publication number: 20130321966
    Abstract: An overcurrent protection device comprises a maximum-allowed-current unit and a power switch. The maximum-allowed-current unit determines a maximum allowed current in real-time. The maximum allowed current is determined at least partially on an instantaneous level of a load voltage. The load voltage is a voltage across a load to be powered. The power switch is connectable with a switch input to a voltage supply and with a switch output to the load, for providing power to said load. The power switch has a conductive state and a nonconductive state, and is arranged to assume the nonconductive state in response to an indication that a current through the power switch is exceeding the maximum allowed current. A method of operating a power switch is also described.
    Type: Application
    Filed: February 18, 2011
    Publication date: December 5, 2013
    Applicant: Freescale Semiconductor
    Inventors: Vasily A Syngaevskiy, Laurent Guillot, Philippe Rosado, Denis Sergeevich Shuvalov, Alexander Petrovich Soldatov
  • Publication number: 20130314832
    Abstract: An overcurrent protection device comprises a maximum-allowed-current unit and a power switch having a conductive state and a nonconductive state. The maximum-allowed-current unit determines a time-dependent maximum allowed current according to a supply voltage. The power switch assumes the nonconductive state in response to an indication that a current through the power switch is exceeding the maximum allowed current. A method of operating a power switch is also described.
    Type: Application
    Filed: February 18, 2011
    Publication date: November 28, 2013
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Laurent Guillot, Philippe Rosado, Denis Sergeevich Shuvalov, Alexander Petrovich Soldatov, Vasily Alekseyevich Syngaevskiy
  • Patent number: 8506700
    Abstract: A dry composition including at least one binder and at least one silicone oil with the following formula (I): in which: Z1 and Z2, identical or different, independently represent a terminal group selected from the group consisting of a hydrogen atom; a hydroxyl; a linear or branched, optionally substituted C1 to C12 alkyl; a linear or branched, optionally substituted C2 to C12 alkenyl radical; a linear or branched, optionally substituted C1 to C12 heteroalkyl; an optionally substituted C5 to C10 cycloalkyl radical; and an optionally substituted C6 to C18 aryl radical; R1 and R2, identical or different, independently represent a hydrogen atom; a hydroxyl; a linear or branched, optionally substituted C1 to C12 alkyl; a linear or branched, optionally substituted C2 to C12 alkenyl radical; a linear or branched, optionally substituted C1 to C12 heteroalkyl; an optionally substituted C5 to C10 cycloalkyl radical; or an optionally substituted C6 to C18 aryl radical; m and n, identical or different, independen
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: August 13, 2013
    Assignee: Sika Technology AG
    Inventors: Christophe Guyot, Laurent Guillot
  • Patent number: 8461780
    Abstract: A method is intended to make it possible to drive a PTC electrical load element with a switching unit with the highest possible operational reliability. For this purpose, the electric current is switched off if a predetermined current threshold value is exceeded, the magnitude of the current threshold value being determined from the operating parameters of the load element.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: June 11, 2013
    Assignees: Freescale Semiconductor, Inc., Conti Temic Microelectronic GmbH
    Inventors: Laurent Guillot, Kamel Abouda, Philippe Rosado, Helmut Henssler, Uli Joos, Josef Schnell, Norbert Stuhler
  • Patent number: 8395872
    Abstract: A current driver circuit comprises circuitry having a current adjustment function and operably coupled to a current driver for providing a current to a current consuming device. The circuitry comprises or is operably coupled to a function arranged to determine a current level being drawn by the current consuming device. The current adjustment function varies an over-load limit applied to the current driver in response to a variation in the determined current level. In this manner, the current level being drawn by a current consuming device, such as a light bulb, is used to continuously or intermittently adjusting the current limit of a current driver circuit, such as a lamp driver, to minimize the energy dissipated in case of an overload condition.
    Type: Grant
    Filed: April 18, 2005
    Date of Patent: March 12, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Pierre Turpin, Laurent Guillot
  • Publication number: 20120326690
    Abstract: A circuit having an active mode and a sleep mode includes a power transistor, an amplifier, and a protection circuit. The power transistor has a first current electrode coupled to a first power supply terminal, a second current electrode as an output of the circuit for coupling to a load, and a control electrode, wherein the power transistor is characterized by having a threshold voltage and a leakage current, wherein the leakage current occurs between the control electrode and the first current electrode during the sleep mode. The amplifier has an output coupled to the control electrode of the power transistor that provides an active output during the active mode. The protection circuit detects the leakage current and prevents the leakage current from developing a voltage on the control electrode of the power transistor that exceeds the threshold voltage of the power transistor.
    Type: Application
    Filed: March 3, 2010
    Publication date: December 27, 2012
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Thierry Sicard, Laurent Guillot
  • Patent number: 8284534
    Abstract: An over-current protection circuit, including a current input for receiving a input current and a current output electrically connectable to a load, for outputting an output current proportional to the input current. A switch connects the current input to the current output. The switch has at least two switch states including an open state in which a current flow from the current input to the current output is interrupted and a closed state in which the current flow is enabled. The switch includes a switch control input for controlling the switch state. The circuit has a sensor for sensing a load current applied to the load and a controller connected to the sensor for controlling the switch to be in the open state when the sensed load current has exceeded a current threshold during a predetermined period of time, the predetermined period of time being dependent on an amount with which said sensed load current exceeds the threshold.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: October 9, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Laurent Guillot, Philippe Dupuy, Jeff Reiter
  • Publication number: 20120119678
    Abstract: A method is intended to make it possible to drive a PTC electrical load element with a switching unit with the highest possible operational reliability. For this purpose, the electric current is switched off if a predetermined current threshold value is exceeded, the magnitude of the current threshold value being determined from the operating parameters of the load element.
    Type: Application
    Filed: January 25, 2012
    Publication date: May 17, 2012
    Applicants: CONTI TEMIC MICROELECTRONIC GMBH, FREESCALE SEMICONDUCTOR, INC.
    Inventors: Laurent Guillot, Kamel Abouda, Philippe Rosado, Helmut Henssler, Uli Joos, Josef Schnell, Norbert Stuhler
  • Patent number: 8134308
    Abstract: A method is intended to make it possible to drive a PTC electrical load element with a switching unit with the highest possible operational reliability. For this purpose, the electric current is switched off if a predetermined current threshold value is exceeded, the magnitude of the current threshold value being determined from the operating parameters of the load element.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: March 13, 2012
    Assignees: Freescale Semiconductor, Inc., Conti Temic Microelectronic GmbH
    Inventors: Laurent Guillot, Kamel Abouda, Philippe Rosado, Helmut Henssler, Uli Joos, Josef Schnell, Norbert Stuhler
  • Publication number: 20120055373
    Abstract: A dry composition including at least one binder and an oil comprising at least one compound of formula (I) below: wherein, Z represents an optionally substituted, linear or branched C4 to C28 alkyl radical or an optionally substituted, linear or branched C4 to C28 alkenyl radical, and R, R? and R? are identical or different and separately represent an optionally substituted, linear or branched hydrogen atom, hydroxyl radical, C1 to C12 alkyl radical, an optionally substituted, linear or branched C1 to C12 heteroalkyl radical, an optionally substituted, linear or branched C5 to C10 cycloalkyl radical, or an optionally substituted, linear or branched C6 to C18 aryl radical.
    Type: Application
    Filed: August 25, 2011
    Publication date: March 8, 2012
    Applicant: SIKA TECHNOLOGY AG
    Inventors: Christophe Guyot, Laurent Guillot
  • Publication number: 20120037044
    Abstract: A dry composition including at least one binder and at least one silicone oil with the following formula (I): in which: Z1 and Z2, identical or different, independently represent a terminal group selected from the group consisting of a hydrogen atom; a hydroxyl; a linear or branched, optionally substituted C1 to C12 alkyl; a linear or branched, optionally substituted C2 to C12 alkenyl radical; a linear or branched, optionally substituted C1 to C12 heteroalkyl; an optionally substituted C5 to C10 cycloalkyl radical; and an optionally substituted C6 to C18 aryl radical; R1 and R2, identical or different, independently represent a hydrogen atom; a hydroxyl; a linear or branched, optionally substituted C1 to C12 alkyl; a linear or branched, optionally substituted C2 to C12 alkenyl radical; a linear or branched, optionally substituted C1 to C12 heteroalkyl; an optionally substituted C5 to C10 cycloalkyl radical; or an optionally substituted C6 to C18 aryl radical; m and n, identical or different, independen
    Type: Application
    Filed: August 25, 2011
    Publication date: February 16, 2012
    Applicant: SIKA TECHNOLOGY AG
    Inventors: Christophe GUYOT, Laurent GUILLOT
  • Publication number: 20110267728
    Abstract: An over-current protection circuit, including a current input for receiving a input current and a current output electrically connectable to a load, for outputting an output current proportional to the input current. A switch connects the current input to the current output. The switch has at least two switch states including an open state in which a current flow from the current input to the current output is interrupted and a closed state in which the current flow is enabled. The switch includes a switch control input for controlling the switch state. The circuit has a sensor for sensing a load current applied to the load and a controller connected to the sensor for controlling the switch to be in the open state when the sensed load current has exceeded a current threshold during a predetermined period of time, the predetermined period of time being dependent on an amount with which said sensed load current exceeds the threshold.
    Type: Application
    Filed: October 30, 2007
    Publication date: November 3, 2011
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Laurent Guillot, Philippe Dupuy, Jeff Reiter
  • Patent number: 8040643
    Abstract: Power supply switching apparatus comprising an output switch for supplying power from a power supply to a load connected to an output terminal, a driver for controlling turn-on of said output switch, and a control signal generator for controlling said driver to produce a desired progressive turn-on characteristic. The apparatus also includes overload detection means responsive to a parameter of the load relative to a reference signal to provide a fault signal in case of detection of an overload condition after a turn-on phase of said output switch. The control signal generator is responsive to the reference signal to activate said overload detection means to provide a fault signal during the turn-on phase of the output switch even in presence of a severe overload condition at the output terminal.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: October 18, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Laurent Guillot, Pierre Turpin
  • Patent number: 7936200
    Abstract: A clock circuit which may include a first clock input for receiving a first clock signal and a second clock input for receiving a second clock signal. A clock calibration unit is connected to the first clock input and the second clock input. The calibration unit may calibrate the second clock signal relative to the first clock signal. The clock calibration unit may have a calibration output for outputting a calibrated clock signal. The clock circuit may include a switch unit connected to the first clock input and the calibration output. The switch unit can select a selected clock signal selected from the first clock signal and the calibrated signal. The switch unit has a switch output for outputting the selected clock signal. A switch control unit is connected to the switch unit for controlling which signal is selected based on a selection criterion and a clock circuit output is connected to the switch unit for outputting the selected clock signal.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: May 3, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kamel Abouda, Laurent Guillot
  • Patent number: 7924061
    Abstract: A clock failure detection circuit comprises clock failure detection logic having a clock input providing an input clock signal, a counter and a reference clock input providing a reference clock signal to the counter for counting a number of reference clock cycles. The counter comprises a reset input arranged to receive successive reset pulses generated by at least one clock edge of the input clock signal to reset a counter value of the counter. The counter value before reset is used to identify a clock frequency error. A method of detecting a clock failure is also described. By using a counter value based on the reference clock cycles, and a reset trigger based on a clock edge of the input signal, it is possible to identify a clock frequency error in a much shorter time.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: April 12, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Laurent Guillot, Kamel Abouda, Pierre Turpin