Patents by Inventor Lawrence Schloss

Lawrence Schloss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120026780
    Abstract: A memory cell including a memory element comprising an electrolytic insulator in contact with a conductive metal oxide (CMO) is disclosed. The CMO includes a crystalline structure and can comprise a pyrochlore oxide, a conductive binary oxide, a multiple B-site perovskite, and a Ruddlesden-Popper structure. The CMO includes mobile ions that can be transported to/from the electrolytic insulator in response to an electric field of appropriate magnitude and direction generated by a write voltage applied across the electrolytic insulator and CMO. The memory cell can include a non-ohmic device (NOD) that is electrically in series with the memory element. The memory cell can be positioned between a cross-point of conductive array lines in a two-terminal cross-point memory array in a single layer of memory or multiple vertically stacked layers of memory that are fabricated over a substrate that includes active circuitry for data operations on the array layer(s).
    Type: Application
    Filed: October 4, 2011
    Publication date: February 2, 2012
    Applicant: UNITY SEMICONDUCTOR CORPORATION
    Inventors: LAWRENCE SCHLOSS, JULIE CASPERSON BREWER, WAYNE KINNEY, RENE MEYER
  • Publication number: 20120020143
    Abstract: A two-terminal memory cell including a Schottky metal-semiconductor contact as a selection device (SD) allows selection of two-terminal cross-point memory array operating voltages that eliminate “half-select leakage current” problems present when other types of non-ohmic devices are used. The SD structure can comprise a “metal/oxide semiconductor/metal” or a “metal/lightly-doped single layer polycrystalline silicon.” The memory cell can include a two-terminal memory element including at least one conductive oxide layer (e.g., a conductive metal oxide—CMO, such as a perovskite or a conductive binary oxide) and an electronically insulating layer (e.g., yttria-stabilized zirconia—YSZ) in contact with the CMO. The SD can be included in the memory cell and configured electrically in series with the memory element. The memory cell can be positioned in a two-terminal cross-point array between a pair of conductive array lines (e.g., a bit line and a word line) across which voltages for data operations are applied.
    Type: Application
    Filed: September 27, 2011
    Publication date: January 26, 2012
    Applicant: UNITY SEMICONDUCTOR CORPORATION
    Inventors: ROY LAMBERTSON, LAWRENCE SCHLOSS
  • Publication number: 20110315943
    Abstract: Memory cell formation using ion implant isolated conductive metal oxide is disclosed, including forming a bottom electrode below un-etched conductive metal oxide layer(s), forming the un-etched conductive metal oxide layer(s) including depositing at least one layer of a conductive metal oxide (CMO) material (e.g., PrCaMnOx, LaSrCoOx, LaNiOx, etc.) over the bottom electrode. At least one portion of the layer of CMO is configured to act as a memory element without etching, and performing ion implantation on portions of the layer(s) of CMO to create insulating metal oxide (IMO) regions in the layer(s) of CMO. The IMO regions are positioned adjacent to electrically conductive CMO regions in the un-etched layer(s) of CMO and the electrically conductive CMO regions are disposed above and in contact with the bottom electrode and form memory elements operative to store non-volatile data as a plurality of conductivity profiles (e.g., resistive states indicative of stored data).
    Type: Application
    Filed: September 2, 2011
    Publication date: December 29, 2011
    Applicant: UNITY SEMICONDUCTOR CORPORATION
    Inventors: DARRELL RINERSON, JONATHAN BORNSTEIN, DAVID HANSEN, ROBIN CHEUNG, STEVEN W. LONGCOR, RENE MEYER, LAWRENCE SCHLOSS
  • Publication number: 20110315948
    Abstract: Memory cell formation using ion implant isolated conductive metal oxide is disclosed, including forming a bottom electrode below unetched conductive metal oxide layer(s), forming the unetched conductive metal oxide layer(s) including depositing at least one layer of a conductive metal oxide (CMO) material (e.g., PrCaMnOx, LaSrCoOx, LaNiOx, etc.) over the bottom electrode. At least one portion of the layer of CMO is configured to act as a memory element without etching, and performing ion implantation on portions of the layer(s) of CMO to create insulating metal oxide (IMO) regions in the layer(s) of CMO. The IMO regions are positioned adjacent to electrically conductive CMO regions in the unetched layer(s) of CMO and the electrically conductive CMO regions are disposed above and in contact with the bottom electrode and form memory elements operative to store non-volatile data as a plurality of conductivity profiles (e.g., resistive states indicative of stored data).
    Type: Application
    Filed: August 23, 2011
    Publication date: December 29, 2011
    Applicant: UNITY SEMICONDUCTOR CORPORATION
    Inventors: DARRELL RINERSON, JONATHAN BORNSTEIN, DAVID HANSEN, ROBIN CHEUNG, STEVEN W. LONGCOR, RENE MEYER, LAWRENCE SCHLOSS
  • Publication number: 20110291067
    Abstract: A threshold device including a plurality of adjacent tunnel barrier layers that are in contact with one another and are made from a plurality of different dielectric materials is disclosed. A memory plug having first and second terminals includes, electrically in series with the first and second terminals, the threshold device and a memory element that stores data as a plurality of conductivity profiles. The threshold device is operative to impart a characteristic I-V curve that defines current flow through the memory element as a function of applied voltage across the terminals during data operations. The threshold device substantially reduces or eliminates current flow through half-selected or un-selected memory plugs and allows a sufficient magnitude of current to flow through memory plugs that are selected for read and write operations. The threshold device reduces or eliminates data disturb in half-selected memory plugs and increases S/N ratio during read operations.
    Type: Application
    Filed: August 9, 2011
    Publication date: December 1, 2011
    Applicant: UNITY SEMICONDUCTOR CORPORATION
    Inventors: JULIE CASPERSON BREWER, DARRELL RINERSON, CHRISTOPHE J. CHEVALLIER, WAYNE KINNEY, ROY LAMBERTSON, LAWRENCE SCHLOSS
  • Patent number: 8045364
    Abstract: An ion barrier layer made from a dielectric material in contact with an electronically insulating layer is operative to prevent mobile ions transported into the electronically insulating layer from passing through the ion barrier layer and into adjacent layers during data operations on a non-volatile memory cell. A conductive oxide layer in contact with the electronically insulating layer is the source of the mobile ions. A programming data operation is operative to transport a portion of the mobile ions into the electronically insulating layer and an erase data operation is operative to transport the mobile ions back into the conductive oxide layer. When the portion is positioned in the electronically insulating layer the memory cell stores data as a programmed conductivity profile and when a substantial majority of the mobile ions are positioned in the conductive oxide layer the memory cell stores data as an erased conductivity profile.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: October 25, 2011
    Inventors: Lawrence Schloss, Rene Meyer, Wayne Kinney, Roy Lambertson, Julie Casperson Brewer
  • Patent number: 8031509
    Abstract: A memory cell including a memory element comprising an electrolytic insulator in contact with a conductive metal oxide (CMO) is disclosed. The CMO includes a crystalline structure and can comprise a pyrochlore oxide, a conductive binary oxide, a multiple B-site perovskite, and a Ruddlesden-Popper structure. The CMO includes mobile ions that can be transported to/from the electrolytic insulator in response to an electric field of appropriate magnitude and direction generated by a write voltage applied across the electrolytic insulator and CMO. The memory cell can include a non-ohmic device (NOD) that is electrically in series with the memory element. The memory cell can be positioned between a cross-point of conductive array lines in a two-terminal cross-point memory array in a single layer of memory or multiple vertically stacked layers of memory that are fabricated over a substrate that includes active circuitry for data operations on the array layer(s).
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: October 4, 2011
    Inventors: Lawrence Schloss, Julie Casperson Brewer, Wayne Kinney, Rene Meyer
  • Patent number: 8031510
    Abstract: An ion barrier layer made from a dielectric material in contact with an electronically insulating layer is operative to prevent mobile ions transported into the electronically insulating layer from passing through the ion barrier layer and into adjacent layers during data operations on a non-volatile memory cell. A conductive oxide layer in contact with the electronically insulating layer is the source of the mobile ions. A programming data operation is operative to transport a portion of the mobile ions into the electronically insulating layer and an erase data operation is operative to transport the mobile ions back into the conductive oxide layer. When the portion is positioned in the electronically insulating layer the memory cell stores data as a programmed conductivity profile and when a substantial majority of the mobile ions are positioned in the conductive oxide layer the memory cell stores data as an erased conductivity profile.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: October 4, 2011
    Inventors: Lawrence Schloss, Rene Meyer, Wayne Kinney, Roy Lambertson, Julie Casperson Brewer
  • Patent number: 8027215
    Abstract: A two-terminal memory cell including a Schottky metal-semiconductor contact as a non-ohmic device (NOD) allows selection of two-terminal cross-point memory array operating voltages that eliminate “half-select leakage current” problems present when other types of non-ohmic devices are used. The NOD structure can comprise a “metal/oxide semiconductor/metal” or a “metal/lightly-doped single layer polycrystalline silicon.” The memory cell can include a two-terminal memory element including at least one conductive oxide layer (e.g., a conductive metal oxide—CMO, such as a perovskite or a conductive binary oxide) and an electronically insulating layer (e.g., yttria-stabilized zirconia—YSZ) in contact with the CMO. The NOD can be included in the memory cell and configured electrically in series with the memory element. The memory cell can be positioned in a two-terminal cross-point array between a pair of conductive array lines (e.g., a bit line and a word line) across which voltages for data operations are applied.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: September 27, 2011
    Inventors: Roy Lambertson, Lawrence Schloss
  • Patent number: 8003511
    Abstract: Memory cell formation using ion implant isolated conductive metal oxide is disclosed, including forming a bottom electrode below unetched conductive metal oxide layer(s), forming the unetched conductive metal oxide layer(s) including depositing at least one layer of a conductive metal oxide (CMO) material (e.g., PrCaMnOX, LaSrCoOX, LaNiOX, etc.) over the bottom electrode. At least one portion of the layer of CMO is configured to act as a memory element without etching, and performing ion implantation on portions of the layer(s) of CMO to create insulating metal oxide (IMO) regions in the layer(s) of CMO. The IMO regions are positioned adjacent to electrically conductive CMO regions in the unetched layer(s) of CMO and the electrically conductive CMO regions are disposed above and in contact with the bottom electrode and form memory elements operative to store non-volatile data as a plurality of conductivity profiles (e.g., resistive states indicative of stored data).
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: August 23, 2011
    Inventors: Darrell Rinerson, Jonathan Bornstein, Robin Cheung, David Hansen, Steven W. Longcor, Rene Meyer, Lawrence Schloss
  • Patent number: 7995371
    Abstract: A threshold device including a plurality of adjacent tunnel barrier layers that are in contact with one another and are made from a plurality of different dielectric materials is disclosed. A memory plug having first and second terminals includes, electrically in series with the first and second terminals, the threshold device and a memory element that stores data as a plurality of conductivity profiles. The threshold device is operative to impart a characteristic I-V curve that defines current flow through the memory element as a function of applied voltage across the terminals during data operations. The threshold device substantially reduces or eliminates current flow through half-selected or un-selected memory plugs and allows a sufficient magnitude of current to flow through memory plugs that are selected for read and write operations. The threshold device reduces or eliminates data disturb in half-selected memory plugs and increases S/N ratio during read operations.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: August 9, 2011
    Inventors: Darrell Rinerson, Julie Casperson Brewer, Christophe J. Chevallier, Wayne Kinney, Roy Lambertson, Lawrence Schloss
  • Publication number: 20110149634
    Abstract: An ion barrier layer made from a dielectric material in contact with an electronically insulating layer is operative to prevent mobile ions transported into the electronically insulating layer from passing through the ion barrier layer and into adjacent layers during data operations on a non-volatile memory cell. A conductive oxide layer in contact with the electronically insulating layer is the source of the mobile ions. A programming data operation is operative to transport a portion of the mobile ions into the electronically insulating layer and an erase data operation is operative to transport the mobile ions back into the conductive oxide layer. When the portion is positioned in the electronically insulating layer the memory cell stores data as a programmed conductivity profile and when a substantial majority of the mobile ions are positioned in the conductive oxide layer the memory cell stores data as an erased conductivity profile.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 23, 2011
    Applicant: UNITY SEMICONDUCTOR CORPORATION
    Inventors: Lawrence Schloss, Rene Meyer, Wayne Kinney, Roy Lambertson, Julie Casperson Brewer
  • Publication number: 20110149636
    Abstract: An ion barrier layer made from a dielectric material in contact with an electronically insulating layer is operative to prevent mobile ions transported into the electronically insulating layer from passing through the ion barrier layer and into adjacent layers during data operations on a non-volatile memory cell. A conductive oxide layer in contact with the electronically insulating layer is the source of the mobile ions. A programming data operation is operative to transport a portion of the mobile ions into the electronically insulating layer and an erase data operation is operative to transport the mobile ions back into the conductive oxide layer. When the portion is positioned in the electronically insulating layer the memory cell stores data as a programmed conductivity profile and when a substantial majority of the mobile ions are positioned in the conductive oxide layer the memory cell stores data as an erased conductivity profile.
    Type: Application
    Filed: July 6, 2010
    Publication date: June 23, 2011
    Applicant: UNITY SEMICONDUCTOR CORPORATION
    Inventors: Lawrence Schloss, Rene Meyer, Wayne Kinney, Roy Lamberston, Julie Casperson Brewer
  • Publication number: 20100157658
    Abstract: A memory cell including a memory element comprising an electrolytic insulator in contact with a conductive metal oxide (CMO) is disclosed. The CMO includes a crystalline structure and can comprise a pyrochlore oxide, a conductive binary oxide, a multiple B-site perovskite, and a Ruddlesden-Popper structure. The CMO includes mobile ions that can be transported to/from the electrolytic insulator in response to an electric field of appropriate magnitude and direction generated by a write voltage applied across the electrolytic insulator and CMO. The memory cell can include a non-ohmic device (NOD) that is electrically in series with the memory element. The memory cell can be positioned between a cross-point of conductive array lines in a two-terminal cross-point memory array in a single layer of memory or multiple vertically stacked layers of memory that are fabricated over a substrate that includes active circuitry for data operations on the array layer(s).
    Type: Application
    Filed: December 18, 2009
    Publication date: June 24, 2010
    Applicant: UNITY SEMICONDUCTOR CORPORATION
    Inventors: Lawrence Schloss, Julie Casperson Brewer, Wayne Kinney, Rene Meyer
  • Publication number: 20100157710
    Abstract: A two-terminal memory cell including a Schottky metal-semiconductor contact as a non-ohmic device (NOD) allows selection of two-terminal cross-point memory array operating voltages that eliminate “half-select leakage current” problems present when other types of non-ohmic devices are used. The NOD structure can comprise a “metal/oxide semiconductor/metal” or a “metal/lightly-doped single layer polycrystalline silicon.” The memory cell can include a two-terminal memory element including at least one conductive oxide layer (e.g., a conductive metal oxide—CMO, such as a perovskite or a conductive binary oxide) and an electronically insulating layer (e.g., yttria-stabilized zirconia—YSZ) in contact with the CMO. The NOD can be included in the memory cell and configured electrically in series with the memory element. The memory cell can be positioned in a two-terminal cross-point array between a pair of conductive array lines (e.g., a bit line and a word line) across which voltages for data operations are applied.
    Type: Application
    Filed: September 2, 2009
    Publication date: June 24, 2010
    Applicant: UNITY SEMICONDUCTOR CORPORATION
    Inventors: Roy Lambertson, Lawrence Schloss
  • Publication number: 20100159641
    Abstract: Memory cell formation using ion implant isolated conductive metal oxide is disclosed, including forming a bottom electrode below unetched conductive metal oxide layer(s), forming the unetched conductive metal oxide layer(s) including depositing at least one layer of a conductive metal oxide (CMO) material (e.g., PrCaMnOX, LaSrCoOX, LaNiOX, etc.) over the bottom electrode. At least one portion of the layer of CMO is configured to act as a memory element without etching, and performing ion implantation on portions of the layer(s) of CMO to create insulating metal oxide (IMO) regions in the layer(s) of CMO. The IMO regions are positioned adjacent to electrically conductive CMO regions in the unetched layer(s) of CMO and the electrically conductive CMO regions are disposed above and in contact with the bottom electrode and form memory elements operative to store non-volatile data as a plurality of conductivity profiles (e.g., resistive states indicative of stored data).
    Type: Application
    Filed: December 18, 2009
    Publication date: June 24, 2010
    Applicant: UNITY SEMICONDUCTOR CORPORATION
    Inventors: Darrell Rinerson, Jonathan Bornstein, David Hansen, Robin Cheung, Steven W. Longcor, Rene Meyer, Lawrence Schloss
  • Publication number: 20090303772
    Abstract: A memory using mixed valence conductive oxides is disclosed. The memory includes a mixed valence conductive oxide that is less conductive in its oxygen deficient state and a mixed electronic ionic conductor that is an electrolyte to oxygen and promotes an electric field effective to cause oxygen ionic motion.
    Type: Application
    Filed: June 18, 2009
    Publication date: December 10, 2009
    Applicant: UNITY SEMICONDUCTOR CORPORATION
    Inventors: Darrell Rinerson, Christophe Chevallier, Wayne Kinney, Roy Lambertson, John E. Sanchez, JR., Lawrence Schloss, Philip Swab, Edmond Ward
  • Publication number: 20090225582
    Abstract: A data retention structure in a memory element that stores data as a plurality of conductivity profiles is disclosed. The memory element can be used in a variety of electrical systems and includes a conductive oxide layer, an ion impeding layer, and an electrolytic tunnel barrier layer. A write voltage applied across the memory element causes a portion of the mobile ions to move from the conductive oxide layer, through the ion impeding layer, and into the electrolytic tunnel barrier layer thereby changing a conductivity of the memory element, or the write voltage causes a quantity of the mobile ions to move from the electrolytic tunnel barrier layer, through the ion impeding layer, and back into the conductive oxide layer. The ion impeding layer is operative to substantially stop mobile ion movement when a voltage that is less than the write voltage is applied across the memory element.
    Type: Application
    Filed: March 7, 2008
    Publication date: September 10, 2009
    Applicant: UNITY SEMICONDUCTOR CORPORATION
    Inventor: Lawrence Schloss
  • Publication number: 20090027976
    Abstract: A threshold device including a plurality of adjacent tunnel barrier layers that are in contact with one another and are made from a plurality of different dielectric materials is disclosed. A memory plug having first and second terminals includes, electrically in series with the first and second terminals, the threshold device and a memory element that stores data as a plurality of conductivity profiles. The threshold device is operative to impart a characteristic I-V curve that defines current flow through the memory element as a function of applied voltage across the terminals during data operations. The threshold device substantially reduces or eliminates current flow through half-selected or un-selected memory plugs and allows a sufficient magnitude of current to flow through memory plugs that are selected for read and write operations. The threshold device reduces or eliminates data disturb in half-selected memory plugs and increases S/N ratio during read operations.
    Type: Application
    Filed: July 26, 2007
    Publication date: January 29, 2009
    Applicant: UNITY SEMICONDUCTOR CORPORATION
    Inventors: Julie Casperson Brewer, Darrell Rinerson, Christophe J. Chevallier, Wayne Kinney, Roy Lambertson, Lawrence Schloss
  • Publication number: 20060171200
    Abstract: A memory using a mixed valence conductive oxides. The memory includes a mixed valence conductive oxide that is less conductive in its oxygen deficient state and a mixed electronic ionic conductor that is an electrolyte to oxygen and promotes an electric field effective to cause oxygen ionic motion.
    Type: Application
    Filed: March 30, 2005
    Publication date: August 3, 2006
    Applicant: UNITY SEMICONDUCTOR CORPORATION
    Inventors: Darrell Rinerson, Christophe Chevallier, Wayne Kinney, Roy Lambertson, Steven Longcor, John Sanchez, Lawrence Schloss, Philip Swab, Edmond Ward