Patents by Inventor Leonard Sharpless

Leonard Sharpless has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9689533
    Abstract: A gas delivery system for a plasma process system such as a plasma etching system wherein inner surfaces of gas passages are coated with a corrosion-resistant material coating formed by curing a layer of fluidic precursor deposited on the inner surfaces. The coating can be formed by (a) flowing a fluidic precursor of a corrosion-resistant material through the gas passages and depositing a layer of the fluidic precursor to completely coat the inner surfaces of the gas passages; (b) removing excess fluidic precursor from the inner surfaces; (c) curing the deposited layer of the fluidic precursor to form a corrosion-resistant material coating.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: June 27, 2017
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Ian Kenworthy, Duane Outka, Fangli Hao, Leonard Sharpless, Yijun Du
  • Patent number: 9687908
    Abstract: A method for casting an internal feature within an object is provided. An internal mold is formed from a mold powder, comprising a base powder and an acid powder mixed into the base powder. A molten material is cast around the internal mold. The molten material is solidified. The internal mold is reacted with water, wherein the reacting causes the acid powder to neutralize the base powder.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: June 27, 2017
    Assignee: Law Research Corporation
    Inventor: Leonard Sharpless
  • Publication number: 20170066045
    Abstract: A method for casting an internal feature within an object is provided. An internal mold is formed from a mold powder, comprising a base powder and an acid powder mixed into the base powder. A molten material is cast around the internal mold. The molten material is solidified. The internal mold is reacted with water, wherein the reacting causes the acid powder to neutralize the base powder.
    Type: Application
    Filed: September 3, 2015
    Publication date: March 9, 2017
    Inventor: Leonard Sharpless
  • Patent number: 9490135
    Abstract: A movable symmetric chamber liner in a plasma reaction chamber, for protecting the plasma reaction chamber, enhancing the plasma density and uniformity, and reducing process gas consumption, comprising a cylindrical wall, a bottom wall with a plurality of openings, a raised inner rim with an embedded heater, heater contacts, and RF ground return contacts. The chamber liner is moved by actuators between an upper position at which substrates can be transferred into and out of the chamber, and a lower position at which substrate are processed in the chamber. The actuators also provide electrical connection to the heater and RF ground return contacts.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: November 8, 2016
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Danny Brown, Leonard Sharpless
  • Publication number: 20140366968
    Abstract: A gas delivery system for a plasma process system such as a plasma etching system wherein inner surfaces of gas passages are coated with a corrosion-resistant material coating formed by curing a layer of fluidic precursor deposited on the inner surfaces. The coating can be formed by (a) flowing a fluidic precursor of a corrosion-resistant material through the gas passages and depositing a layer of the fluidic precursor to completely coat the inner surfaces of the gas passages; (b) removing excess fluidic precursor from the inner surfaces; (c) curing the deposited layer of the fluidic precursor to form a corrosion-resistant material coating.
    Type: Application
    Filed: August 29, 2014
    Publication date: December 18, 2014
    Inventors: Ian Kenworthy, Duane Outka, Fangli Hao, Leonard Sharpless, Yijun Du
  • Patent number: 8852685
    Abstract: A method of coating the inner surfaces of gas passages of a gas delivery system for a plasma process system such as a plasma etching system includes (a) flowing a fluidic precursor of a corrosion-resistant material through the gas passages and depositing a layer of the fluidic precursor to completely coat the inner surfaces of the gas passages; (b) removing excess fluidic precursor from the inner surfaces; (c) curing the deposited layer of the fluidic precursor to form a corrosion-resistant material coating.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: October 7, 2014
    Assignee: Lam Research Corporation
    Inventors: Ian Kenworthy, Duane Outka, Fangli Hao, Leonard Sharpless, Yijun Du
  • Publication number: 20140051254
    Abstract: A movable symmetric chamber liner in a plasma reaction chamber, for protecting the plasma reaction chamber, enhancing the plasma density and uniformity, and reducing process gas consumption, comprising a cylindrical wall, a bottom wall with a plurality of openings, a raised inner rim with an embedded heater, heater contacts, and RF ground return contacts. The chamber liner is moved by actuators between an upper position at which substrates can be transferred into and out of the chamber, and a lower position at which substrate are processed in the chamber. The actuators also provide electrical connection to the heater and RF ground return contacts.
    Type: Application
    Filed: October 23, 2013
    Publication date: February 20, 2014
    Applicant: Lam Research Corporation
    Inventors: Danny Brown, Leonard Sharpless
  • Patent number: 8597428
    Abstract: A linear actuator comprised of an actuator body having a first portion and a second portion, each arranged along a longitudinal axis of the actuator body. A vacuum bellows is concentrically located in the first portion and is configured to seal a vacuum environment from the second portion. A linear motion shaft is concentrically located substantially within the actuator body and is configured to move in a linear direction along the longitudinal axis. An electrically conductive portion of the shaft is concentrically located substantially within the vacuum bellows and electrically insulated therefrom and is configured to receive and conduct a signal. A lift force generating portion of the shaft is concentrically located substantially within the second portion. An electrical contact pad is electrically coupled to the conductive portion of the shaft and is configured to couple the signal to another surface upon activation of the shaft.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: December 3, 2013
    Assignee: Lam Research Corporation
    Inventors: Danny Brown, Allan Ronne, Arthur Sato, John Daugherty, Leonard Sharpless
  • Patent number: 8597462
    Abstract: A movable symmetric chamber liner in a plasma reaction chamber, for protecting the plasma reaction chamber, enhancing the plasma density and uniformity, and reducing process gas consumption, comprising a cylindrical wall, a bottom wall with a plurality of openings, a raised inner rim with an embedded heater, heater contacts, and RF ground return contacts. The chamber liner is moved by actuators between an upper position at which substrates can be transferred into and out of the chamber, and a lower position at which substrate are processed in the chamber. The actuators also provide electrical connection to the heater and RF ground return contacts.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: December 3, 2013
    Assignee: Lam Research Corporation
    Inventors: Danny Brown, Leonard Sharpless
  • Patent number: 8524099
    Abstract: Methods for processing events occurring in a process chamber are provided. In one method, an operation includes carrying gas and receiving an optical signal from the process chamber to an analysis tool that operates in response to the optical signal having a signal-to-noise ratio (SNR) for process analysis. And, dividing the carried gas and optical signal into a plurality of separate gas and optical signals between the process chamber and the analysis tool. The dividing is configured through separate apertures so that the apertures collectively maintain the SNR of the optical signal received at the tool. Methods provide a septum in a second bore dividing the second bore into apertures configured to reduce etching of and deposition on the optical access window and to maintain the desired SNR at the diagnostic end point.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: September 3, 2013
    Assignee: Lam Research Corporation
    Inventors: Jeff A. Bogart, Leonard Sharpless, Harmeet Singh
  • Publication number: 20110287632
    Abstract: A movable symmetric chamber liner in a plasma reaction chamber, for protecting the plasma reaction chamber, enhancing the plasma density and uniformity, and reducing process gas consumption, comprising a cylindrical wall, a bottom wall with a plurality of openings, a raised inner rim with an embedded heater, heater contacts, and RF ground return contacts. The chamber liner is moved by actuators between an upper position at which substrates can be transferred into and out of the chamber, and a lower position at which substrate are processed in the chamber. The actuators also provide electrical connection to the heater and RF ground return contacts.
    Type: Application
    Filed: May 21, 2010
    Publication date: November 24, 2011
    Applicant: Lam Research Corporation
    Inventors: Danny Brown, Leonard Sharpless
  • Publication number: 20110259519
    Abstract: A method of coating the inner surfaces of gas passages of a gas delivery system for a plasma process system such as a plasma etching system includes (a) flowing a fluidic precursor of a corrosion-resistant material through the gas passages and depositing a layer of the fluidic precursor to completely coat the inner surfaces of the gas passages; (b) removing excess fluidic precursor from the inner surfaces; (c) curing the deposited layer of the fluidic precursor to form a corrosion-resistant material coating.
    Type: Application
    Filed: April 23, 2010
    Publication date: October 27, 2011
    Applicant: Lam Research Corporation
    Inventors: Ian Kenworthy, Duane Outka, Fangli Hao, Leonard Sharpless, Yijun Du
  • Publication number: 20110103805
    Abstract: Methods for processing events occurring in a process chamber are provided. In one method, an operation includes carrying gas and receiving an optical signal from the process chamber to an analysis tool that operates in response to the optical signal having a signal-to-noise ratio (SNR) for process analysis. And, dividing the carried gas and optical signal into a plurality of separate gas and optical signals between the process chamber and the analysis tool. The dividing is configured through separate apertures so that the apertures collectively maintain the SNR of the optical signal received at the tool. Methods provide a septum in a second bore dividing the second bore into apertures configured to reduce etching of and deposition on the optical access window and to maintain the desired SNR at the diagnostic end point.
    Type: Application
    Filed: January 7, 2011
    Publication date: May 5, 2011
    Inventors: Jeff A. Bogart, Leonard Sharpless, Harmeet Singh
  • Patent number: 7928366
    Abstract: An injector provides optical access into a process chamber along an axial path from a diagnostic end point outside the process chamber through an optical access window. A hollow housing body receives first and second process gases, and surrounds the axial path. A sleeve in the body is urged against the body to minimize particle generation, and defines a first gas bore injecting the first process gas into the process chamber. A second gas bore of the sleeve surrounds the axial path for injecting the second process gas into the process chamber, allowing an optical signal to have a desired signal-to-noise ratio (SNR) at the end point. Methods provide a septum in the second bore dividing the second bore into apertures configured to reduce etching of and deposition on the optical access window and to maintain the desired SNR at the diagnostic end point.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: April 19, 2011
    Assignee: Lam Research Corporation
    Inventors: Jeff A. Bogart, Leonard Sharpless, Harmeet Singh
  • Publication number: 20090152958
    Abstract: A linear actuator comprised of an actuator body having a first portion and a second portion, each arranged along a longitudinal axis of the actuator body. A vacuum bellows is concentrically located in the first portion and is configured to seal a vacuum environment from the second portion. A linear motion shaft is concentrically located substantially within the actuator body and is configured to move in a linear direction along the longitudinal axis. An electrically conductive portion of the shaft is concentrically located substantially within the vacuum bellows and electrically insulated therefrom and is configured to receive and conduct a signal. A lift force generating portion of the shaft is concentrically located substantially within the second portion. An electrical contact pad is electrically coupled to the conductive portion of the shaft and is configured to couple the signal to another surface upon activation of the shaft.
    Type: Application
    Filed: December 12, 2008
    Publication date: June 18, 2009
    Applicant: LAM Research Corporation
    Inventors: Danny Brown, Allan Ronne, Arthur Sato, John Daugherty, Leonard Sharpless
  • Publication number: 20080083883
    Abstract: An injector provides optical access into a process chamber along an axial path from a diagnostic end point outside the process chamber through an optical access window. A hollow housing body receives first and second process gases, and surrounds the axial path. A sleeve in the body is urged against the body to minimize particle generation, and defines a first gas bore injecting the first process gas into the process chamber. A second gas bore of the sleeve surrounds the axial path for injecting the second process gas into the process chamber, allowing an optical signal to have a desired signal-to-noise ratio (SNR) at the end point. Methods provide a septum in the second bore dividing the second bore into apertures configured to reduce etching of and deposition on the optical access window and to maintain the desired SNR at the diagnostic end point.
    Type: Application
    Filed: October 6, 2006
    Publication date: April 10, 2008
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Jeff A. Bogart, Leonard Sharpless, Harmeet Singh
  • Publication number: 20070169704
    Abstract: A port in a window member provides first access to a process chamber interior for gas injection and second optical access for process analysis and measurement. Plasma-induced etching and deposition in a bore of a gas injector integral with the window member is reduced by a grounded shield surrounding an access region, and coatings reduce particle flaking from walls of a first clear optical aperture of the injector and from a second clear optical aperture of a gas and optical access fitting,. The shield surrounds the region, and is configured with couplers to hold the gas and optical access fitting to the window member for access to the injector. The couplers compress seals so that a gas bore in the fitting is sealed to a plenum of the injector, while allowing optical access into the chamber through the first clear optical aperture and the second clear optical aperture.
    Type: Application
    Filed: June 20, 2006
    Publication date: July 26, 2007
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Fangli Hao, Leonard Sharpless, Harmeet Singh
  • Publication number: 20060000413
    Abstract: A plasma processing system for processing a substrate is described. The plasma processing system includes a bottom piece including a chuck configured for holding the substrate. The plasma processing system also includes an induction coil configured to generate an electromagnetic field in order to create a plasma for processing the substrate; and an optimized top piece coupled to the bottom piece, the top piece further configured for a heating and cooling system. Wherein, the heating and cooling system is substantially shielded from the electromagnetic field by the optimized top piece, and the optimized top piece can substantially be handled by a single person.
    Type: Application
    Filed: June 30, 2004
    Publication date: January 5, 2006
    Inventors: Leonard Sharpless, Keith Comendant
  • Publication number: 20060000551
    Abstract: A temperature control device for controlling temperature of an upper chamber of a plasma processing apparatus is described. The temperature control device includes a thermally conductive body having an inner surface and an outer surface removably connected with and in thermal communication with the upper chamber of the plasma processing apparatus. The temperature control device also includes a plurality of thermal interface layers in thermal communication with the thermally conductive body wherein at least one layer is a heating element; and a cooling element connected with the banded thermally conductive body and thermally coupled with the upper chamber of the plasma processing apparatus wherein the cooling element is configured to conduct a fluidic medium.
    Type: Application
    Filed: June 30, 2004
    Publication date: January 5, 2006
    Inventors: Miguel Saldana, Leonard Sharpless, John Daugherty