Patents by Inventor Leonid M Litvak

Leonid M Litvak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8914126
    Abstract: An exemplary system includes a sound processor configured to identify one or more spectral peaks of an audio signal presented to a cochlear implant patient and an implantable cochlear stimulator communicatively coupled to the sound processor and configured to apply electrical stimulation representative of the one or more spectral peaks to at least one stimulation site within the cochlear implant patient using a partial multipolar stimulation configuration and apply electrical stimulation representative of one or more other spectral components of the audio signal to at least one other stimulation site within the cochlear implant patient using a monopolar stimulation configuration. Corresponding systems methods are also disclosed.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: December 16, 2014
    Assignee: Advanced Bionics AG
    Inventors: Aniket Saoji, Leonid M. Litvak
  • Publication number: 20140336725
    Abstract: An exemplary method of lowering a pitch sensation as perceived by a cochlear implant patient includes 1) identifying a most apical electrode included in a plurality of electrodes disposed within a cochlea of the patient, 2) directing a cochlear implant communicatively coupled to the plurality of electrodes to apply one or more anodecathode biphasic stimulation pulses to the most apical electrode during a stimulation period, and 3) directing the cochlear implant to apply one or more cathode-anode biphasic stimulation pulses to one or more other electrodes included in the plurality of electrodes during the stimulation period. Corresponding methods and systems are also disclosed.
    Type: Application
    Filed: November 28, 2012
    Publication date: November 13, 2014
    Inventors: Waldo Nogueira, Leonid M. Litvak, Aniket Saoji
  • Publication number: 20140330344
    Abstract: An exemplary system for facilitating binaural hearing by a cochlear implant patient includes 1) a spectral analysis facility configured to divide a first audio signal presented to a first ear of the patient and a second audio signal presented to a second ear of the patient into first and second sets of analysis channels, respectively, and 2) a processing facility configured to process acoustic content contained in a first analysis channel included in the first set of analysis channels and acoustic content contained in a second analysis channel included in the second set of analysis channels, mix the processed acoustic content contained in the first and second analysis channels, and direct a cochlear implant to apply electrical stimulation representative of the mixed acoustic content to the first ear by way of a stimulation channel that corresponds to the first analysis channel.
    Type: Application
    Filed: December 29, 2011
    Publication date: November 6, 2014
    Applicant: ADVANCED BIONICS AG
    Inventors: Lakshmi N. Mishra, Leonid M. Litvak, Abhijit Kulkarni, Lee F. Hartley
  • Publication number: 20140309712
    Abstract: An exemplary system for synchronizing an operation of a middle ear analyzer and a cochlear implant system includes 1) a mapping facility configured to maintain mapping data representative of an association between a plurality of sound levels and a plurality of current levels and between a plurality of frequencies and a plurality of electrodes, 2) a detection facility configured to receive an acoustic signal transmitted by the middle ear analyzer and detect a sound level and a frequency of the acoustic signal, and 3) a processing facility configured to identify, based on the mapping data, a current level associated with the detected sound level and one or more electrodes associated with the detected frequency and direct the cochlear implant system to apply electrical stimulation having the identified current level to one or more stimulation sites within a patient by way of the identified one or more electrodes.
    Type: Application
    Filed: November 15, 2011
    Publication date: October 16, 2014
    Applicant: ADVANCED BIONICS AG
    Inventors: Kinuko Masaki, Abhijit Kulkarni, Aniket Saoji, Leonid M. Litvak
  • Patent number: 8855344
    Abstract: An exemplary method includes a sound processing subsystem 1) dividing an audio signal presented to an auditory prosthesis patient into a plurality of signals each representative of a distinct frequency portion of the audio signal and each contained within a distinct analysis channel included in a plurality of analysis channels, 2) determining a sound level of each signal included in the plurality of signals, and 3) setting an amount of noise reduction applied to each signal included in the plurality of signals in accordance with the determined sound level of each signal included in the plurality of signals. Corresponding methods and systems are also disclosed.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: October 7, 2014
    Assignee: Advanced Bionics AG
    Inventors: Leonid M. Litvak, Aniket Saoji
  • Publication number: 20140257431
    Abstract: An exemplary system includes an implantable cochlear stimulator implanted within a patient, a short electrode array coupled to the implantable cochlear stimulator and having a plurality of electrodes disposed thereon, and a sound processor communicatively coupled to the implantable cochlear stimulator. The sound processor may direct the implantable cochlear stimulator to apply a main current to a first electrode included in the plurality of electrodes and associated with a first pitch, direct the implantable cochlear stimulator to concurrently apply, during the application of the main current, a compensation current to a second electrode included in the plurality of electrodes and associated with a second pitch, and optimize an amount of the compensation current to result in a target pitch being presented to the patient that is distanced from the first pitch in a pitch direction opposite a pitch direction of the second pitch in relation to the first pitch.
    Type: Application
    Filed: May 23, 2014
    Publication date: September 11, 2014
    Applicant: Advanced Bionics AG
    Inventors: Leonid M. Litvak, Myles McLaughlin, Abhijit Kulkarni, Aniket Saoji
  • Publication number: 20140243928
    Abstract: An exemplary system includes a sound processor configured to process one or more audio signals and an implantable cochlear stimulator configured to apply stimulation representative of the one or more audio signals to a patient via a plurality of electrodes. In some embodiments, the sound processor directs the implantable cochlear stimulator to 1) apply a main current to a first electrode included in the plurality of electrodes and associated with a first pitch, 2) concurrently apply, during the application of the main current, a compensation current to a second electrode included in the plurality of electrodes and associated with a second pitch that is lower than the first pitch, and 3) adjust the compensation current to result in a target pitch being presented to the patient, the target pitch being higher than the first pitch.
    Type: Application
    Filed: May 7, 2014
    Publication date: August 28, 2014
    Applicant: Advanced Bionics AG
    Inventors: Leonid M. Litvak, Aniket Saoji
  • Patent number: 8768476
    Abstract: An exemplary method includes 1) identifying, by a cochlear implant system, an electrode included within an array of electrodes as being a disabled electrode, 2) selecting, by the cochlear implant system, at least two non-adjacent electrodes surrounding the disabled electrode, and 3) simultaneously applying, by the cochlear implant system, stimulation current to the at least two non-adjacent electrodes to compensate for a loss of stimulation resulting from the disabled electrode. Corresponding methods and systems are also disclosed.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: July 1, 2014
    Assignee: Advanced Bionics, LLC
    Inventors: Aniket Saoji, Leonid M. Litvak
  • Patent number: 8768475
    Abstract: An exemplary system includes 1) a sound processor configured to divide an audio signal into a plurality of analysis channels, wherein each of the analysis channels contains information corresponding to a distinct frequency band of the audio signal, and wherein one of the analysis channels contains fine structure information corresponding to the audio signal, and 2) an implantable cochlear stimulator configured to generate electrical stimulation in accordance with the information contained within each of the analysis channels, apply the electrical stimulation to at least one stimulation site within a patient via a plurality of stimulation channels, each of the stimulation channels corresponding to one of the analysis channels and configured to convey the information contained within the analysis channels to the patient via at least one electrode, and at least partially isolate one of the stimulation channels from a rest of the stimulation channels.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: July 1, 2014
    Assignee: Advanced Bionics, LLC
    Inventors: Leonid M. Litvak, Aniket Saoji, Anthony J. Spahr, Edward H. Overstreet
  • Patent number: 8761894
    Abstract: An exemplary method includes 1) applying a main current to a first electrode disposed within a patient and associated with a first pitch, 2) concurrently applying a compensation current to a second electrode disposed within the patient and associated with a second pitch during the application of the main current, the compensation current being out-of-phase with the main current, and 3) optimizing an amount of the compensation current to result in a target pitch being presented to the patient that is distanced from the first pitch in a pitch direction opposite a pitch direction of the second pitch in relation to the first pitch. Corresponding methods and systems are also disclosed.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: June 24, 2014
    Assignee: Advanced Bionics AG
    Inventors: Leonid M. Litvak, Aniket Saoji
  • Patent number: 8755895
    Abstract: An exemplary signal processing unit includes 1) a microphone configured to detect one or more acoustic signals, 2) processing circuitry configured to process the one or more acoustic signals, and 3) a port configured to receive one or more electrodes that are configured to be placed on an outer surface of the head of a patient and to detect one or more central auditory potentials. The processing circuitry may be further configured to process the detected central auditory potentials.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: June 17, 2014
    Assignee: Advanced Bionics AG
    Inventor: Leonid M. Litvak
  • Patent number: 8751006
    Abstract: An exemplary method includes a sound processing unit 1) directing an implantable cochlear stimulator to apply a plurality of stimulation pulses each having a first pulse width by way of a plurality of electrodes during a first stimulation frame, the plurality of electrodes including a first electrode and a set of remaining electrodes, 2) detecting a change in impedance of the first electrode, 3) adjusting, in response to the change in impedance of the first electrode, a pulse width parameter associated with the first electrode to define a second pulse width, and 4) directing the implantable cochlear stimulator to apply a stimulation pulse having the second pulse width by way of the first electrode and a plurality of stimulation pulses having the first pulse width by way of the set of remaining electrodes during a second stimulation frame subsequent to the first stimulation frame.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: June 10, 2014
    Assignee: Advanced Bionics AG
    Inventors: Aniket Saoji, Leonid M. Litvak
  • Publication number: 20140126731
    Abstract: An exemplary method includes 1) detecting, by an auditory prosthesis configured to be implanted in a patient, a communicative coupling of a sound processor to the auditory prosthesis, the sound processor configured to be located external to the patient, and 2) logging, by the auditory prosthesis, data associated with an operation of the sound processor while the sound processor is communicatively coupled to the auditory prosthesis. Corresponding auditory prostheses and systems are also disclosed.
    Type: Application
    Filed: June 8, 2012
    Publication date: May 8, 2014
    Applicant: ADVANCED BIONICS AG
    Inventors: Leonid M. Litvak, Lakshmi N. Mishra
  • Patent number: 8706247
    Abstract: An exemplary auditory prosthesis system includes an auditory prosthesis configured to be implanted within a head of a patient and to apply electrical stimulation representative of an audio signal to one or more stimulation sites within the patient in accordance with one or more stimulation parameters, a behind-the-ear sound processing unit configured to be secured to an ear of the patient and to transmit the one or more stimulation parameters to the auditory prosthesis, and a remote audio processor module separate from the behind-the-ear sound processing unit and communicatively coupled to the behind-the-ear sound processing unit via a communication link, the remote audio processor module configured to perform at least a portion of a signal processing heuristic on the audio signal in order to facilitate generation of the one or more stimulation parameters.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: April 22, 2014
    Assignee: Advanced Bionics
    Inventors: Lakshmi N. Mishra, Abhijit Kulkarni, Leonid M. Litvak
  • Publication number: 20140081352
    Abstract: The stimulation provided in the electrically stimulated cochlea is modulated in accordance with the amplitude of a received acoustic signal and the onset of a sound in a received acoustic signal to provide increased sound perception. An onset time that corresponds to the onset of a sound is detected in an acoustic signal associated with a frequency band. A forcing voltage and a transmitting factor are determined, wherein the forcing voltage and the transmitting factor are associated with the frequency band at the detected onset time. The acoustic signal is modulated as a function of the forcing voltage and the transmitting factor to generate an output signal. The generated output signal can be used to stimulate the cochlea. The modulation strategy can be used in conjunction with sound processing strategies that employ frequency modulation, amplitude modulation, or a combination of frequency and amplitude modulation.
    Type: Application
    Filed: November 21, 2013
    Publication date: March 20, 2014
    Applicant: Advanced Bionics AG
    Inventors: Gene Y. Fridman, Leonid M. Litvak
  • Publication number: 20140074183
    Abstract: Among other things, enhancing spectral contrast for a cochlear implant listener includes detecting a time domain signal. A first transformation is applied to the detected time domain signal to convert the time domain signal to a frequency domain signal. A second transformation is applied to the frequency domain signal to express the frequency domain signal as a sum of two or more components. A sensitivity of the cochlear implant listener to detect modulation of each component is obtained.
    Type: Application
    Filed: November 13, 2013
    Publication date: March 13, 2014
    Applicant: Advanced Bionics AG
    Inventors: Abhijit Kulkarni, Leonid M. Litvak, Aniket Saoji
  • Publication number: 20140074463
    Abstract: An exemplary system includes a detection facility configured to detect an input sound level of an audio signal presented to an auditory prosthesis patient; and an adaptive gain control (AGC) facility configured to 1) determine whether the detected input sound level is in a quiet region, an intermediate region, or a loud region, and 2) apply a gain to the audio signal in accordance with an AGC gain function that specifies the gain to be substantially equal to or less than a first gain threshold if the detected input sound level is in the quiet region, substantially equal to or less than a second gain threshold if the detected input sound level is in the loud region, and greater than the first and second gain thresholds if the detected input sound level is in the intermediate region. Corresponding systems and methods are also disclosed.
    Type: Application
    Filed: May 26, 2011
    Publication date: March 13, 2014
    Applicant: ADVANCED BIONICS AG
    Inventors: Leonid M. Litvak, Nobutaka Okuyama, Abhijit Kulkarni
  • Publication number: 20140064532
    Abstract: Exemplary systems and methods for optimizing a compliance voltage of an auditory prosthesis are disclosed. Each stimulation channel formed by electrodes that are coupled to an auditory prosthesis may have an adjustable current steering range associated therewith. Each adjustable current steering range is centered about the midpoint of its respective stimulation channel and defines a range of current steering that may be used within its respective stimulation channel. A compliance voltage of an auditory prosthesis may be optimized by setting a current steering range for one or more stimulation channels to a value that results in an optimum balance between power conservation and performance of the auditory prosthesis.
    Type: Application
    Filed: May 2, 2011
    Publication date: March 6, 2014
    Applicant: ADVANCED BIONICS AG
    Inventor: Leonid M. Litvak
  • Patent number: 8655449
    Abstract: Exemplary cochlear implant systems include an implantable head module configured to be implanted within a head of a patient. The implantable head module includes a cochlear stimulator configured to be coupled to an electrode lead, the electrode lead including one or more electrodes configured to be in communication with one or more stimulation sites within the patient. The implantable head module also includes a signal receiver configured to receive a telemetry signal representative of an audio signal from a signal transmitter located external to the patient, a sound processor configured to process the telemetry signal and direct the cochlear stimulator to generate and apply electrical stimulation representative of the audio signal to the one or more stimulation sites via the electrode lead, and a power receiver configured to receive power for operating the implantable head module from a power transmitter located external to the patient.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: February 18, 2014
    Assignee: Advanced Bionics AG
    Inventors: Matthew I. Haller, Leonid M. Litvak, Abhijit Kulkarni
  • Publication number: 20140031898
    Abstract: An exemplary method includes a Shabbat-compatible auditory prosthesis system (a) detecting a transition of a clock signal from being in an on state to being in an off state, (b) directing, in response the transition of the clock signal to being in the off state, a sound processor to turn off and enter an extended off state during which the sound processor remains off for a first predetermined amount of time, and (c) directing, in response to an elapsing of the first predetermined amount of time, the sound processer to turn on and enter a search state for up to a second predetermined amount of time during which the sound processor searches for an implanted auditory prosthesis. Corresponding methods and systems are also disclosed.
    Type: Application
    Filed: March 26, 2012
    Publication date: January 30, 2014
    Inventors: Leonid M. Litvak, Lakshmi N. Mishra, Reuven Knopf