Patents by Inventor Leonid M Litvak

Leonid M Litvak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9533146
    Abstract: An exemplary system includes an electro-acoustic stimulation (“EAS”) device, a cochlear implant, an electrode lead comprising a plurality of basal electrodes configured to be disposed within a basal region of a cochlea of a patient and a plurality of apical electrodes configured to be disposed within an apical region of the cochlea; and a loudspeaker communicatively coupled to the EAS device. The EAS device is configured to operate in an EAS mode by 1) disabling the apical electrodes for standard electrical stimulation, 2) detecting, while the apical electrodes are disabled for standard electrical stimulation, audio content presented to the patient and included in an acoustic stimulation frequency range, 3) directing the loudspeaker to apply acoustic stimulation representative of the audio content included in the acoustic stimulation frequency range to the patient, and 4) periodically directing the cochlear implant to apply conditioning stimulation by way of the disabled apical electrodes.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: January 3, 2017
    Assignee: Advanced Bionics AG
    Inventors: Mark B. Downing, Leonid M. Litvak
  • Publication number: 20160331967
    Abstract: An exemplary system includes 1) a stimulation management facility configured to direct an electro-acoustic stimulation (“EAS”) system to concurrently apply acoustic stimulation to a patient by way of a loudspeaker and electrical stimulation to the patient by way of an electrode, and 2) a fitting facility communicatively coupled to the stimulation management facility and configured to detect an interaction between the acoustic stimulation and the electrical stimulation, and set one or more control parameters governing an operation of the EAS system based on the detected interaction. Corresponding systems and methods are also disclosed.
    Type: Application
    Filed: July 28, 2016
    Publication date: November 17, 2016
    Inventors: Smita S. Agrawal, Leonid M. Litvak
  • Patent number: 9486630
    Abstract: An exemplary system includes 1) an electro-acoustic stimulation (“EAS”) sound processor configured to be located external to a patient, 2) a cochlear implant communicatively coupled to the EAS sound processor and configured to be implanted within the patient, 3) an electrode array communicatively coupled to the cochlear implant and configured to be located within a cochlea of the patient, and 4) a receiver communicatively coupled to the EAS sound processor and configured to be in communication with an ear of the patient. The EAS sound processor directs at least one of the cochlear implant and the receiver to apply stimulation to the patient, records an evoked response that occurs in response to the stimulation, and performs a predetermined action in accordance with the evoked response. Corresponding systems and methods are also disclosed.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: November 8, 2016
    Assignee: Advanced Bionics AG
    Inventors: Leonid M. Litvak, Smita S. Agrawal, Gulamali Emadi, Aniket Saoji, Charles C. Finley, R. Tissa Karunasiri, Kanthaiah Koka
  • Patent number: 9479877
    Abstract: An exemplary method includes 1) detecting, by an auditory prosthesis configured to be implanted in a patient, a communicative coupling of a sound processor to the auditory prosthesis, the sound processor configured to be located external to the patient, and 2) logging, by the auditory prosthesis, data associated with an operation of the sound processor while the sound processor is communicatively coupled to the auditory prosthesis. Corresponding auditory prostheses and systems are also disclosed.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: October 25, 2016
    Assignee: Advanced Bionics AG
    Inventors: Leonid M. Litvak, Lakshmi N. Mishra
  • Publication number: 20160277849
    Abstract: An exemplary sound processor 1) identifies at least one frequency bin, included in a plurality of frequency bins included in a frequency spectrum of an audio signal that is presented to a cochlear implant patient, that contains spectral energy above a modified spectral envelope, 2) identifies each frequency bin that contains spectral energy below the modified spectral envelope, 3) enhances the spectral energy contained in the at least one frequency bin identified as containing spectral energy above the modified spectral envelope, and 4) compresses the spectral energy contained in each frequency bin identified as containing spectral energy below the modified spectral envelope.
    Type: Application
    Filed: March 23, 2016
    Publication date: September 22, 2016
    Inventors: Adam B. Strauss, Leonid M. Litvak
  • Patent number: 9446236
    Abstract: An exemplary system includes a sound processor that 1) determines a relative importance of performance versus power conservation for an auditory prosthesis, 2) determines, in accordance with the determined relative importance of performance versus power conservation, a current steering range for a stimulation channel defined by first and second physical electrodes communicatively coupled to the auditory prosthesis, the current steering range centered about a midpoint of the stimulation channel; and 3) directs the auditory prosthesis to apply electrical stimulation representative of audio content having a frequency included in a frequency band associated with the stimulation channel in accordance with the determined current steering range.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: September 20, 2016
    Assignee: Advanced Bionics AG
    Inventor: Leonid M. Litvak
  • Patent number: 9440072
    Abstract: An exemplary system includes 1) a stimulation management facility configured to direct an electro-acoustic stimulation (“EAS”) system to concurrently apply acoustic stimulation to a patient by way of a loudspeaker and electrical stimulation to the patient by way of an electrode located within a cochlea of the patient during a fitting session, and 2) a fitting facility communicatively coupled to the stimulation management facility and configured to detect, during the fitting session, an interaction between the acoustic stimulation and the electrical stimulation, and set, during the fitting session, one or more control parameters governing an operation of the EAS system based on the detected interaction. Corresponding systems and methods are also disclosed.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: September 13, 2016
    Assignee: Advanced Bionics AG
    Inventors: Smita S. Agrawal, Leonid M. Litvak
  • Patent number: 9440071
    Abstract: An exemplary system for facilitating binaural hearing by a cochlear implant patient includes 1) a spectral analysis facility configured to divide a first audio signal presented to a first ear of the patient and a second audio signal presented to a second ear of the patient into first and second sets of analysis channels, respectively, and 2) a processing facility configured to process acoustic content contained in a first analysis channel included in the first set of analysis channels and acoustic content contained in a second analysis channel included in the second set of analysis channels, mix the processed acoustic content contained in the first and second analysis channels, and direct a cochlear implant to apply electrical stimulation representative of the mixed acoustic content to the first ear by way of a stimulation channel that corresponds to the first analysis channel.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: September 13, 2016
    Assignee: Advanced Bionics AG
    Inventors: Lakshmi N. Mishra, Leonid M. Litvak, Abhijit Kulkarni, Lee F. Hartley
  • Publication number: 20160243361
    Abstract: An exemplary system 1) presents, during a first time period, a tone in isolation to a patient by way of a receiver in communication with an ear of the patient, the tone having a predetermined frequency included in a frequency band, 2) presents, during a second time period, the tone together with a masking signal to the patient by way of the receiver, 3) uses an electrode located within an intracochlear region of the patient that is associated with the frequency band to record, during the first time period, a first evoked response that occurs in response to the presentation of the tone, and record, during the second time period, a second evoked response that occurs in response to the presentation of the tone together with the masking signal, and 4) determines, based on the first and second evoked responses, whether the intracochlear region is dead.
    Type: Application
    Filed: October 6, 2014
    Publication date: August 25, 2016
    Inventors: Leonid M. Litvak, Smita S. Agrawal
  • Publication number: 20160228694
    Abstract: An exemplary system may include an intracochlear electrode array configured to be inserted into a cochlea of a patient, an intraneural probe comprising an intraneural electrode contact and configured to be inserted into an auditory nerve of the patient, and a computing system. The computing system may be configured to identify an optimal insertion path for an intraneural electrode array into the auditory nerve of the patient by 1) repeatedly stimulating the intraneural electrode contact of the intraneural probe while the intraneural probe is advanced into the auditory nerve along a probe insertion path, 2) using the intracochlear electrode array to record a plurality of evoked responses that occur in response to the repeated stimulation of the intraneural electrode contact, and 3) determining, based on the plurality of evoked responses, whether the probe insertion path is the optimal insertion path for the intraneural electrode array.
    Type: Application
    Filed: September 17, 2013
    Publication date: August 11, 2016
    Inventors: Abhijit Kulkarni, Leonid M. Litvak, Mark B. Downing
  • Patent number: 9403005
    Abstract: An exemplary sound processor 1) sets a current steering range for a stimulation channel defined by first and second physical electrodes communicatively coupled to an auditory prosthesis to be less than an entire physical range of the stimulation channel, 2) maps each frequency included in a frequency band associated with the stimulation channel to a virtual electrode included in a plurality of virtual electrodes included in the current steering range of the stimulation channel, 3) identifies a feature of an audio signal, 4) identifies a virtual electrode included in the plurality of virtual electrodes and that is associated with the identified feature, and 5) directs the auditory prosthesis to apply electrical stimulation representative of the identified feature to a stimulation site associated with the identified virtual electrode by concurrently stimulating the first physical electrode with a first current level and the second physical electrode with a second current level.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: August 2, 2016
    Assignee: Advanced Bionics AG
    Inventor: Leonid M. Litvak
  • Patent number: 9393414
    Abstract: The stimulation provided in the electrically stimulated cochlea is modulated in accordance with the amplitude of a received acoustic signal and the onset of a sound in a received acoustic signal to provide increased sound perception. An onset time that corresponds to the onset of a sound is detected in an acoustic signal associated with a frequency band. A forcing voltage and a transmitting factor are determined, wherein the forcing voltage and the transmitting factor are associated with the frequency band at the detected onset time. The acoustic signal is modulated as a function of the forcing voltage and the transmitting factor to generate an output signal. The generated output signal can be used to stimulate the cochlea. The modulation strategy can be used in conjunction with sound processing strategies that employ frequency modulation, amplitude modulation, or a combination of frequency and amplitude modulation.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: July 19, 2016
    Assignee: Advanced Bionics AG
    Inventors: Gene Y. Fridman, Leonid M. Litvak
  • Publication number: 20160199647
    Abstract: An exemplary system includes an electro-acoustic stimulation (“EAS”) device, a cochlear implant, an electrode lead comprising a plurality of basal electrodes configured to be disposed within a basal region of a cochlea of a patient and a plurality of apical electrodes configured to be disposed within an apical region of the cochlea; and a loudspeaker communicatively coupled to the EAS device. The EAS device is configured to operate in an EAS mode by 1) disabling the apical electrodes for standard electrical stimulation, 2) detecting, while the apical electrodes are disabled for standard electrical stimulation, audio content presented to the patient and included in an acoustic stimulation frequency range, 3) directing the loudspeaker to apply acoustic stimulation representative of the audio content included in the acoustic stimulation frequency range to the patient, and 4) periodically directing the cochlear implant to apply conditioning stimulation by way of the disabled apical electrodes.
    Type: Application
    Filed: March 23, 2016
    Publication date: July 14, 2016
    Inventors: Mark B. Downing, Leonid M. Litvak
  • Publication number: 20160144179
    Abstract: The stimulation provided in the electrically stimulated cochlea is modulated in accordance with the amplitude of a received acoustic signal and the onset of a sound in a received acoustic signal to provide increased sound perception. An onset time that corresponds to the onset of a sound is detected in an acoustic signal associated with a frequency band. A forcing voltage and a transmitting factor are determined, wherein the forcing voltage and the transmitting factor are associated with the frequency band at the detected onset time. The acoustic signal is modulated as a function of the forcing voltage and the transmitting factor to generate an output signal. The generated output signal can be used to stimulate the cochlea. The modulation strategy can be used in conjunction with sound processing strategies that employ frequency modulation, amplitude modulation, or a combination of frequency and amplitude modulation.
    Type: Application
    Filed: December 29, 2015
    Publication date: May 26, 2016
    Inventors: Gene Y. Fridman, Leonid M. Litvak
  • Publication number: 20160144177
    Abstract: An exemplary system includes a processing facility configured to process an audio signal presented to a cochlear implant patient and a control facility configured to direct a cochlear implant to apply electrical stimulation representative of the audio signal to the cochlear implant patient by 1) directing the cochlear implant to concurrently apply a first biphasic stimulation pulse by way of a first electrode and a second biphasic stimulation pulse by way of a second electrode during a first time slot, and 2) directing the cochlear implant to concurrently apply a third biphasic stimulation pulse by way of the second electrode and a fourth biphasic stimulation pulse by way of a third electrode during a second time slot that immediately follows the first time slot. The third and fourth biphasic stimulation pulses are flipped in phase compared to the first and second biphasic stimulation pulses.
    Type: Application
    Filed: June 25, 2013
    Publication date: May 26, 2016
    Inventors: Aniket Saoji, Leonid M. Litvak
  • Patent number: 9320898
    Abstract: An exemplary electro-acoustic stimulation (EAS) device includes 1) a detection facility configured to detect audio content presented to a patient and included in an acoustic stimulation frequency range, 2) an acoustic stimulation management facility configured to direct a loud-speaker to apply acoustic stimulation representative of the audio content included in the acoustic stimulation frequency range to the patient, and 3) an electrical stimulation management facility configured to direct a cochlear implant implanted within the patient to apply sub-threshold electrical stimulation to the patient by way of one or more electrodes disposed within an apical region of a cochlea of the patient together with the application of the acoustic stimulation. Corresponding systems and methods are also disclosed.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: April 26, 2016
    Assignee: Advanced Bionics AG
    Inventors: Mark B. Downing, Leonid M. Litvak
  • Patent number: 9324339
    Abstract: An exemplary method of enhancing pitch of an audio signal presented to a cochlear implant patient includes 1) determining a frequency spectrum of an audio signal presented to a cochlear implant patient, the frequency spectrum comprising a plurality of frequency bins that each contain spectral energy, 2) generating a modified spectral envelope of the frequency spectrum of the audio signal, 3) identifying each frequency bin included in the plurality of frequency bins that contains spectral energy above the modified spectral envelope and each frequency bin included in the plurality of frequency bins that contains spectral energy below the modified spectral envelope, 4) enhancing the spectral energy contained in each frequency bin identified as containing spectral energy above the modified spectral envelope, and 5) compressing the spectral energy contained in each frequency bin identified as containing spectral energy below the modified spectral envelope. Corresponding methods and systems are also disclosed.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: April 26, 2016
    Assignee: Advanced Bionics AG
    Inventors: Adam B. Strauss, Leonid M. Litvak
  • Patent number: 9288585
    Abstract: Among other things, enhancing spectral contrast for a cochlear implant listener includes detecting a time domain signal. A first transformation is applied to the detected time domain signal to convert the time domain signal to a frequency domain signal. A second transformation is applied to the frequency domain signal to express the frequency domain signal as a sum of two or more components. A sensitivity of the cochlear implant listener to detect modulation of each component is obtained.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: March 15, 2016
    Assignee: Advanced Bionics AG
    Inventors: Abhijit Kulkarni, Leonid M. Litvak, Aniket Saoji
  • Patent number: 9254384
    Abstract: The stimulation provided in the electrically stimulated cochlea is modulated in accordance with the amplitude of a received acoustic signal and the onset of a sound in a received acoustic signal to provide increased sound perception. An onset time that corresponds to the onset of a sound is detected in an acoustic signal associated with a frequency band. A forcing voltage and a transmitting factor are determined, wherein the forcing voltage and the transmitting factor are associated with the frequency band at the detected onset time. The acoustic signal is modulated as a function of the forcing voltage and the transmitting factor to generate an output signal. The generated output signal can be used to stimulate the cochlea. The modulation strategy can be used in conjunction with sound processing strategies that employ frequency modulation, amplitude modulation, or a combination of frequency and amplitude modulation.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: February 9, 2016
    Assignee: Advanced Bionics AG
    Inventors: Gene Y. Fridman, Leonid M. Litvak
  • Patent number: 9232321
    Abstract: An exemplary system includes a detection facility configured to detect an input sound level of an audio signal presented to an auditory prosthesis patient; and an adaptive gain control (AGC) facility configured to 1) determine whether the detected input sound level is in a quiet region, an intermediate region, or a loud region, and 2) apply a gain to the audio signal in accordance with an AGC gain function that specifies the gain to be substantially equal to or less than a first gain threshold if the detected input sound level is in the quiet region, substantially equal to or less than a second gain threshold if the detected input sound level is in the loud region, and greater than the first and second gain thresholds if the detected input sound level is in the intermediate region. Corresponding systems and methods are also disclosed.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: January 5, 2016
    Assignee: Advanced Bionics AG
    Inventors: Leonid M. Litvak, Nobutaka Okuyama, Abhijit Kulkarni