Patents by Inventor Leslie Bromberg

Leslie Bromberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8082735
    Abstract: Fuel management system for enhanced operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder. It is preferred that the direct injection occur after the inlet valve is closed. It is also preferred that stoichiometric operation with a three way catalyst be used to minimize emissions. In addition, it is also preferred that the anti-knock agents have a heat of vaporization per unit of combustion energy that is at least three times that of gasoline.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: December 27, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Daniel R. Cohn, John B. Heywood
  • Patent number: 8069839
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency of the engine.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: December 6, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, Leslie Bromberg, John B. Heywood
  • Publication number: 20110260075
    Abstract: A non-radioactive source for Atmospheric Pressure Ionization is described. The electron-beam sealed tube uses a pyroelectric crystal(s). One end of the crystal is grounded while the other end has a metallic cap with sharp feature to generate an electron beam of a given energy. The rate of heating and/or cooling of the crystal is used to control the current generated from a tube. A heating and/or cooling element such as a Peltier element is useful for controlling the rate of cooling of the crystal. A thin window that is transparent to electrons but impervious to gases is needed in order to prolong the life of the tube and allow the extraction of the electrons. If needed, multiple crystals with independent heaters can be used to provide continuous operation of the device. Dielectric shielding of the pyroelectric crystal is used to minimize discharge of the crystal.
    Type: Application
    Filed: June 13, 2011
    Publication date: October 27, 2011
    Applicant: Excellims Corporation
    Inventors: Leslie Bromberg, Ching Wu
  • Publication number: 20110226210
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency of the engine.
    Type: Application
    Filed: May 27, 2011
    Publication date: September 22, 2011
    Applicant: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, Leslie Bromberg, John B. Heywood
  • Publication number: 20110168128
    Abstract: The present application describes systems for water retrieval from the engine exhaust. This collected water can be used both for removing ethanol from ethanol-gasoline blends, and for use as a knock suppressant. The water that is removed from the exhaust can be used as the only source of water or in combination with water that is externally supplied. The present application also describes new means for removal of water from the exhaust that can be employed for applications. In some embodiments, an auto-heat exchanger is employed to recover water from the engine exhaust.
    Type: Application
    Filed: June 25, 2010
    Publication date: July 14, 2011
    Applicant: ETHANOL BOOSTING SYSTEMS LLC
    Inventors: John Bradley, Leslie Bromberg, Daniel Cohn
  • Patent number: 7971572
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency of the engine.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: July 5, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, Leslie Bromberg, John B. Heywood
  • Patent number: 7960704
    Abstract: A non-radioactive source for Atmospheric Pressure Ionization is described. The electron-beam sealed tube uses a pyroelectric crystal(s). One end of the crystal is grounded while the other end has a metallic cap with sharp feature to generate an electron beam of a given energy. The rate of heating and/or cooling of the crystal is used to control the current generated from a tube. A heating and/or cooling element such as a Peltier element is useful for controlling the rate of cooling of the crystal. A thin window that is transparent to electrons but impervious to gases is needed in order to prolong the life of the tube and allow the extraction of the electrons. If needed, multiple crystals with independent heaters can be used to provide continuous operation of the device. The energy of the electrons can be determined through the appropriate choice of the radius of curvature of the sharp feature and the gap between the sharp feature and the window, while the opposite side of the crystal is at low voltage.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: June 14, 2011
    Assignee: Excellims Corporation
    Inventors: Leslie Bromberg, Ching Wu
  • Publication number: 20110126460
    Abstract: A rotating heat regenerator is used to recover heat from the syngas at it exits the reactor vessel of a waste or biomass gasifier. In some embodiments, three or more streams are passed through the heat exchanger. One stream is the dirty syngas, which heats the rotating material. A second stream is a cold stream that is heated as it passes through the material. A third stream is a cleaning stream, which serves to remove particulates that are collected on the rotating material as the dirty syngas passes through it. This apparatus can also be used as an auto-heat exchanger, or it can exchange heat between separate flows in the gasifier process. The apparatus can also be used to reduce the heating requirement for the thermal residence chamber (TRC) used downstream from the gasification system.
    Type: Application
    Filed: May 25, 2010
    Publication date: June 2, 2011
    Applicant: InEnTec LLC
    Inventors: Leslie Bromberg, Daniel R. Cohn, Jeffrey E. Surma, James A. Batdorf, David A. Lamar
  • Publication number: 20110126461
    Abstract: The problems of the prior art are overcome by the apparatus and method disclosed herein. The reactor vessel of a plasma gasifier is operated at high pressure. To compensate for the negative effects of high pressure, various modifications to the plasma gasifier are disclosed. For example, by moving the slag, more material is exposed to the plasma, allowing better and more complete processing thereof. In some embodiments, magnetic fields are used to cause movement of the slag and molten metal within the vessel. An additional embodiment is to add microwave heating of the slag and/or the incoming material. Microwave heating can also be used as an alternative to plasma heating in a high pressure gasification system.
    Type: Application
    Filed: May 25, 2010
    Publication date: June 2, 2011
    Applicant: INENTEC LLC
    Inventors: Leslie Bromberg, Daniel R. Cohn, Jeffrey E. Surma, James A. Batdorf, David A. Lamar
  • Publication number: 20110120569
    Abstract: A fuel tank system for gasoline or flexible gasoline/ethanol powered vehicles that use independently controlled direct ethanol injection to provide a large on-demand octane boost is disclosed. The on-demand octane boost is used when needed to prevent knock. The ethanol can be in the form of 100% ethanol or E85 (a 85% ethanol, 15% gasoline mixture) and is stored in a second tank that is separate from the tank that which contains the primary fuel. The primary fuel can be gasoline, E85, ethanol or a mix of these fuels. The fuel tank system enables convenient, quick, flexible and minimal cost refueling of the separate fuel tank. A range of fueling options is available to provide the driver with the maximum freedom to choose fuels depending upon price and availability. Valves may be utilized to direct the flow in fuel to the various tanks.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 26, 2011
    Applicant: ETHANOL BOOSTING SYSTEMS, LLC
    Inventors: Leslie Bromberg, Daniel Cohn
  • Publication number: 20110114058
    Abstract: A bi-fuel spark ignition engine is disclosed. The engine can operate on either gasoline, natural gas or a combination of the two. The amount of each fuel that is used by the engine is based on the engine's operating parameters, such as RPM and torque. In some embodiments, the operator can provide input, such as the availability of natural gas, which affects the operation of the engine. In some embodiments, an anti-knock agent is used to prevent knock at higher values of torque.
    Type: Application
    Filed: May 6, 2010
    Publication date: May 19, 2011
    Applicant: ETHANOL BOOSTING SYSTEMS LLC
    Inventors: Daniel R. Cohn, Leslie Bromberg, John B. Heywood
  • Publication number: 20110100323
    Abstract: An engine having DME pilot ignition is disclosed. DME Pilot ignition creates far more energy than a conventional spark plug, thus minimizes the possibility of misfire in the engine map. DME injection can be used in a number of ways. In one embodiment, DME injection replaces the conventional spark plug in an Otto cycle engine. In another embodiment, DME injection is used in addition to spark ignition to minimize the use of DME. In this embodiment, DME injection is only used during those portions of the engine map where misfire may occur, or during those times when a misfire sensor detects misfire. DME injection can also be used in conjunction with alcohol boosting in other embodiments.
    Type: Application
    Filed: April 15, 2010
    Publication date: May 5, 2011
    Applicant: ETHANOL BOOSTING SYSTEMS LLC
    Inventors: John M. Bradley, Leslie Bromberg, Daniel R. Cohn
  • Publication number: 20110030653
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency of the engine.
    Type: Application
    Filed: October 19, 2010
    Publication date: February 10, 2011
    Applicant: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, Leslie Bromberg, John B. Heywood
  • Patent number: 7841325
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency of the engine.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: November 30, 2010
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, Leslie Bromberg, John B. Heywood
  • Publication number: 20100288232
    Abstract: Fuel management system for enhanced operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder. It is preferred that the direct injection occur after the inlet valve is closed. It is also preferred that stoichiometric operation with a three way catalyst be used to minimize emissions. In addition, it is also preferred that the anti-knock agents have a heat of vaporization per unit of combustion energy that is at least three times that of gasoline.
    Type: Application
    Filed: July 27, 2010
    Publication date: November 18, 2010
    Applicant: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Daniel R. Cohn, John B. Heywood
  • Publication number: 20100263625
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency of the engine.
    Type: Application
    Filed: June 15, 2010
    Publication date: October 21, 2010
    Applicant: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, Leslie Bromberg, John B. Heywood
  • Publication number: 20100206249
    Abstract: Turbocharged or supercharged spark ignition engine. The engine includes a source of methanol for direct injection of methanol into the engine and for delivering a portion of the methanol to a reformer for generating a hydrogen-rich gas.
    Type: Application
    Filed: November 11, 2008
    Publication date: August 19, 2010
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Leslie Bromberg, Daniel R. Cohn
  • Publication number: 20100199946
    Abstract: Fuel management system for enhanced operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder. It is preferred that the direct injection occur after the inlet valve is closed. It is also preferred that stoichiometric operation with a three way catalyst be used to minimize emissions. In addition, it is also preferred that the anti-knock agents have a heat of vaporization per unit of combustion energy that is at least three times that of gasoline.
    Type: Application
    Filed: February 5, 2010
    Publication date: August 12, 2010
    Applicant: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, Leslie Bromberg, John B. Heywood
  • Publication number: 20100198481
    Abstract: Fuel tank system for a direct ethanol injection octane boosted gasoline engine. The system includes a gasoline engine and a main fuel tank that contains a mix of gasoline and gasoline E85. A smaller secondary tank is provided to contain ethanol or E85. An injector directly injects in a separately controlled fashion ethanol or E85 into a cylinder of the engine to boost octane. A control module controls the relative amounts of gasoline and ethanol used and structure is provided for fueling the main and secondary fuel tanks.
    Type: Application
    Filed: April 14, 2010
    Publication date: August 5, 2010
    Applicant: ETHANOL BOOSTING SYSTEMS LLC
    Inventors: Leslie Bromberg, Paul N. Blumberg, Daniel R. Cohn, John Heywood
  • Patent number: 7762233
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency of the engine.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: July 27, 2010
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, Leslie Bromberg, John B. Heywood