Patents by Inventor Li-Chi Yu
Li-Chi Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12266574Abstract: FCVD using multi-step anneal treatment and devices thereof are disclosed. In an embodiment, a method includes depositing a flowable dielectric film on a substrate. The flowable dielectric film is deposited between a first semiconductor fin and a second semiconductor fin. The method further includes annealing the flowable dielectric film at a first anneal temperature for at least 5 hours to form a first dielectric film, annealing the first dielectric film at a second anneal temperature higher than the first anneal temperature to form a second dielectric film, annealing the second dielectric film at a third anneal temperature higher than the first anneal temperature to form an insulating layer, applying a planarization process to the insulating layer, and etching the insulating layer to STI regions on the substrate.Type: GrantFiled: May 6, 2022Date of Patent: April 1, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Yun Chen Teng, Chen-Fong Tsai, Li-Chi Yu, Huicheng Chang, Yee-Chia Yeo
-
Patent number: 12266700Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a stack of semiconductor nanostructures over a base structure and a first epitaxial structure and a second epitaxial structure sandwiching the semiconductor nanostructures. The semiconductor device structure also includes a gate stack wrapped around each of the semiconductor nanostructures and a backside conductive contact connected to the second epitaxial structure. A first portion of the backside conductive contact is directly below the base structure, and a second portion of the backside conductive contact extends upwards to approach a bottom surface of the second epitaxial structure. The semiconductor device structure further includes an insulating spacer between a sidewall of the base structure and the backside conductive contact.Type: GrantFiled: May 6, 2024Date of Patent: April 1, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Huan-Chieh Su, Chun-Yuan Chen, Li-Zhen Yu, Shih-Chuan Chiu, Cheng-Chi Chuang, Chih-Hao Wang
-
Patent number: 12266563Abstract: In some embodiments, the present disclosure relates to an integrated chip structure. The integrated chip structure includes a substrate. A gate electrode is over the substrate and a spacer structure laterally surrounds the gate electrode. A conductive via is disposed on the gate electrode. A liner is arranged along one or more sidewalls of the spacer structure. The conductive via has a bottommost surface that has a larger width than a part of the conductive via that is laterally adjacent to one or more interior sidewalls of the liner.Type: GrantFiled: November 16, 2023Date of Patent: April 1, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Li-Zhen Yu, Cheng-Chi Chuang, Chih-Hao Wang, Yu-Ming Lin, Lin-Yu Huang
-
Patent number: 12255103Abstract: A method includes receiving a substrate having a front side and a back side, forming a shallow trench in the substrate from the front side, forming a liner layer including a first dielectric material in the shallow trench, depositing a second dielectric material different from the first dielectric material on the liner layer to form an isolation feature in the shallow trench, forming an active region surrounded by the isolation feature, forming a gate stack on the active region, forming a source/drain (S/D) feature on the active region and on a side of the gate stack, thinning down the substrate from the back side such that the isolation feature is exposed, etching the active region to expose the S/D feature from the back side to form a backside trench, and forming a backside via feature landing on the S/D feature and surrounded by the liner layer.Type: GrantFiled: July 18, 2023Date of Patent: March 18, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Li-Zhen Yu, Chia-Hao Chang, Huan-Chieh Su, Lin-Yu Huang, Cheng-Chi Chuang, Yu-Ming Lin, Chih-Hao Wang
-
Patent number: 12243781Abstract: Semiconductor device and the manufacturing method thereof are disclosed herein. An exemplary semiconductor device comprises a semiconductor fin disposed over a substrate; a metal gate structure disposed over a channel region of the semiconductor fin; a first interlayer dielectric (ILD) layer disposed over a source/drain (S/D) region next to the channel region of the semiconductor fin; and a first conductive feature including a first conductive portion disposed on the metal gate structure and a second conductive portion disposed on the first ILD layer, wherein a top surface of the first conductive portion is below a top surface of the second conductive portion, a first sidewall of the first conductive portion connects a lower portion of a first sidewall of the second conductive portion.Type: GrantFiled: July 26, 2022Date of Patent: March 4, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACUTRING CO., LTD.Inventors: Cheng-Chi Chuang, Li-Zhen Yu, Yi-Hsun Chiu, Yu-Ming Lin, Chih-Hao Wang
-
Patent number: 12224325Abstract: A method includes forming a dummy gate structure over a substrate; forming a source/drain structure over the substrate; replacing the dummy gate structure with a metal gate structure; forming a protection cap over the metal gate structure; forming a source/drain contact over the source/drain structure; performing a selective deposition process to form a first etch stop layer on the protection cap, in which the selective deposition process has a faster deposition rate on the protection cap than on the source/drain contact; depositing a second etch stop layer over the first etch stop layer the source/drain contact; etching the second etch stop layer to form an opening; and forming a via contact in the opening.Type: GrantFiled: July 14, 2023Date of Patent: February 11, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Li-Zhen Yu, Chia-Hao Chang, Cheng-Chi Chuang, Yu-Ming Lin, Chih-Hao Wang
-
Publication number: 20240332401Abstract: Embodiments include nanostructure devices and methods of forming nanostructure devices which include a treatment process to expand a sidewall spacer material to close a seam in the sidewall spacer material after deposition. The treatment process includes oxidation anneal and heat anneal to expand the sidewall spacer material and crosslink the open seam to form a closed seam, lower k-value, and decrease density.Type: ApplicationFiled: June 13, 2024Publication date: October 3, 2024Inventors: Li-Chi Yu, Cheng-I Chu, Chen-Fong Tsai, Yi-Rui Chen, Sen-Hong Syue, Wen-Kai Lin, Yoh-Rong Liu, Huicheng Chang, Yee-Chia Yeo
-
Patent number: 12040382Abstract: Embodiments include nanostructure devices and methods of forming nanostructure devices which include a treatment process to expand a sidewall spacer material to close a seam in the sidewall spacer material after deposition. The treatment process includes oxidation anneal and heat anneal to expand the sidewall spacer material and crosslink the open seam to form a closed seam, lower k-value, and decrease density.Type: GrantFiled: May 17, 2021Date of Patent: July 16, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Li-Chi Yu, Cheng-I Chu, Chen-Fong Tsai, Yi-Rui Chen, Sen-Hong Syue, Wen-Kai Lin, Yoh-Rong Liu, Huicheng Chang, Yee-Chia Yeo
-
Publication number: 20240194765Abstract: A method of manufacturing a semiconductor device includes forming a multi-layer stack of alternating first layers of a first semiconductor material and second layers of a second semiconductor material on a semiconductor substrate, forming a first recess through the multi-layer stack, and laterally recessing sidewalls of the second layers of the multi-layer stack. The sidewalls are adjacent to the first recess. The method further includes forming inner spacers with respective seams adjacent to the recessed second layers of the multi-layer stack and performing an anneal treatment on the inner spacers to close the respective seams.Type: ApplicationFiled: January 29, 2024Publication date: June 13, 2024Inventors: Yoh-Rong Liu, Wen-Kai Lin, Che-Hao Chang, Chi On Chui, Yung-Cheng Lu, Li-Chi Yu, Sen-Hong Syue
-
Patent number: 11923432Abstract: A method of manufacturing a semiconductor device includes forming a multi-layer stack of alternating first layers of a first semiconductor material and second layers of a second semiconductor material on a semiconductor substrate, forming a first recess through the multi-layer stack, and laterally recessing sidewalls of the second layers of the multi-layer stack. The sidewalls are adjacent to the first recess. The method further includes forming inner spacers with respective seams adjacent to the recessed second layers of the multi-layer stack and performing an anneal treatment on the inner spacers to close the respective seams.Type: GrantFiled: January 3, 2023Date of Patent: March 5, 2024Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Yoh-Rong Liu, Wen-Kai Lin, Che-Hao Chang, Chi On Chui, Yung-Cheng Lu, Li-Chi Yu, Sen-Hong Syue
-
Publication number: 20240055480Abstract: A method includes forming fin structures upwardly extending above a semiconductor substrate; conformally depositing a first dielectric layer over the fin structures; depositing a flowable oxide over the first dielectric layer and between the fin structures; performing, at a temperature lower than about 500° C., a steam annealing process on the flowable oxide to cure the flowable oxide; after performing the steam annealing process, etching the cured flowable oxide until a top surface of the cured flowable oxide is lower than top surfaces of the fin structures; forming a second dielectric layer over the cured flowable oxide; forming a first gate structure extending across a first one of the fin structures and a second gate structure extending across a second one of the fin structures; forming first sources/drain regions on the first one of the fin structures and second sources/drain regions on the second one of the fin structures.Type: ApplicationFiled: August 12, 2022Publication date: February 15, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yun Chen TENG, Chen-Fong TSAI, Li-Chi YU, Huicheng CHANG, Yee-Chia YEO
-
Publication number: 20230144899Abstract: A method of manufacturing a semiconductor device includes forming a multi-layer stack of alternating first layers of a first semiconductor material and second layers of a second semiconductor material on a semiconductor substrate, forming a first recess through the multi-layer stack, and laterally recessing sidewalls of the second layers of the multi-layer stack. The sidewalls are adjacent to the first recess. The method further includes forming inner spacers with respective seams adjacent to the recessed second layers of the multi-layer stack and performing an anneal treatment on the inner spacers to close the respective seams.Type: ApplicationFiled: January 3, 2023Publication date: May 11, 2023Inventors: Yoh-Rong Liu, Wen-Kai Lin, Che-Hao Chang, Chi On Chui, Yung-Cheng Lu, Li-Chi Yu, Sen-Hong Syue
-
Publication number: 20230042726Abstract: FCVD using multi-step anneal treatment and devices thereof are disclosed. In an embodiment, a method includes depositing a flowable dielectric film on a substrate. The flowable dielectric film is deposited between a first semiconductor fin and a second semiconductor fin. The method further includes annealing the flowable dielectric film at a first anneal temperature for at least 5 hours to form a first dielectric film, annealing the first dielectric film at a second anneal temperature higher than the first anneal temperature to form a second dielectric film, annealing the second dielectric film at a third anneal temperature higher than the first anneal temperature to form an insulating layer, applying a planarization process to the insulating layer, and etching the insulating layer to STI regions on the substrate.Type: ApplicationFiled: May 6, 2022Publication date: February 9, 2023Inventors: Yun Chen Teng, Chen-Fong Tsai, Li-Chi Yu, Huicheng Chang, Yee-Chia Yeo
-
Patent number: 11545559Abstract: A method of manufacturing a semiconductor device includes forming a multi-layer stack of alternating first layers of a first semiconductor material and second layers of a second semiconductor material on a semiconductor substrate, forming a first recess through the multi-layer stack, and laterally recessing sidewalls of the second layers of the multi-layer stack. The sidewalls are adjacent to the first recess. The method further includes forming inner spacers with respective seams adjacent to the recessed second layers of the multi-layer stack and performing an anneal treatment on the inner spacers to close the respective seams.Type: GrantFiled: April 14, 2021Date of Patent: January 3, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Yoh-Rong Liu, Wen-Kai Lin, Che-Hao Chang, Chi On Chui, Yung-Cheng Lu, Li-Chi Yu, Sen-Hong Syue
-
Publication number: 20220336636Abstract: A method of manufacturing a semiconductor device includes forming a multi-layer stack of alternating first layers of a first semiconductor material and second layers of a second semiconductor material on a semiconductor substrate, forming a first recess through the multi-layer stack, and laterally recessing sidewalls of the second layers of the multi-layer stack. The sidewalls are adjacent to the first recess. The method further includes forming inner spacers with respective seams adjacent to the recessed second layers of the multi-layer stack and performing an anneal treatment on the inner spacers to close the respective seams.Type: ApplicationFiled: April 14, 2021Publication date: October 20, 2022Inventors: Yoh-Rong Liu, Wen-Kai Lin, Che-Hao Chang, Chi On Chui, Yung-Cheng Lu, Li-Chi Yu, Sen-Hong Syue
-
Publication number: 20220262925Abstract: Embodiments include nanostructure devices and methods of forming nanostructure devices which include a treatment process to expand a sidewall spacer material to close a seam in the sidewall spacer material after deposition. The treatment process includes oxidation anneal and heat anneal to expand the sidewall spacer material and crosslink the open seam to form a closed seam, lower k-value, and decrease density.Type: ApplicationFiled: May 17, 2021Publication date: August 18, 2022Inventors: Li-Chi Yu, Cheng-I Chu, Chen-Fong Tsai, Yi-Rui Chen, Sen-Hong Syue, Wen-Kai Lin, Yoh-Rong Liu, Huicheng Chang, Yee-Chia Yeo
-
Patent number: 10115597Abstract: A device having an epitaxial region and dual metal-semiconductor alloy surfaces is provided. The epitaxial region includes an upward facing facet and a downward facing facet. The upward facing facet has a first metal-semiconductor alloy surface and the downward facing facet has a second metal-semiconductor alloy surface, wherein the first metal-semiconductor alloy is different than the second metal-semiconductor alloy.Type: GrantFiled: January 30, 2017Date of Patent: October 30, 2018Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chun Hsiung Tsai, Chi-Yuan Shih, Gin-Chen Huang, Clement Hsingjen Wann, Li-Chi Yu, Chin-Hsiang Lin, Ling-Yen Yeh, Meng-Chun Chang, Neng-Kuo Chen, Sey-Ping Sun, Ta-Chun Ma, Yen-Chun Huang
-
Publication number: 20170140942Abstract: A device having an epitaxial region and dual metal-semiconductor alloy surfaces is provided. The epitaxial region includes an upward facing facet and a downward facing facet. The upward facing facet has a first metal-semiconductor alloy surface and the downward facing facet has a second metal-semiconductor alloy surface, wherein the first metal-semiconductor alloy is different than the second metal-semiconductor alloy.Type: ApplicationFiled: January 30, 2017Publication date: May 18, 2017Inventors: Chun Hsiung Tsai, Chi-Yuan Shih, Gin-Chen Huang, Clement Hsingjen Wann, Li-Chi Yu, Chin-Hsiang Lin, Ling-Yen Yeh, Meng-Chun Chang, Neng-Kuo Chen, Sey-Ping Sun, Ta-Chun Ma, Yen-Chun Huang
-
Patent number: 9559182Abstract: A device having an epitaxial region and dual metal-semiconductor alloy surfaces is provided. The epitaxial region includes an upward facing facet and a downward facing facet. The upward facing facet has a first metal-semiconductor alloy surface and the downward facing facet has a second metal-semiconductor alloy surface, wherein the first metal-semiconductor alloy is different than the second metal-semiconductor alloy.Type: GrantFiled: December 14, 2015Date of Patent: January 31, 2017Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Clement Hsingjen Wann, Sey-Ping Sun, Ling-Yen Yeh, Chi-Yuan Shih, Li-Chi Yu, Chun Hsiung Tsai, Chin-Hsiang Lin, Neng-Kuo Chen, Meng-Chun Chang, Ta-Chun Ma, Gin-Chen Huang, Yen-Chun Huang
-
Patent number: 9379108Abstract: A method of fabricating a semiconductor device comprises forming a fin structure extending from a substrate, the fin structure comprising a first fin, a second fin, and a third fin between the first fin and the second fin. The method further comprises forming germanide over a first facet of the first fin, a second facet of the second fin, and a substantially planar surface of the third fin, wherein the first facet forms a first acute angle with a major surface of the substrate and is substantially mirror symmetric with the second facet, and wherein the substantially planar surface of the third fin forms a second acute angle smaller than the first acute angle with the major surface of the substrate.Type: GrantFiled: April 30, 2015Date of Patent: June 28, 2016Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Wen Liu, Chi-Yuan Shih, Li-Chi Yu, Meng-Chun Chang, Ting-Chu Ko, Chung-Hsien Chen