Patents by Inventor Li-Chi Yu

Li-Chi Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11978773
    Abstract: A semiconductor device structure and a method for forming a semiconductor device structure are provided. The semiconductor device structure includes a stack of channel structures over a base structure. The semiconductor device structure also includes a first epitaxial structure and a second epitaxial structure sandwiching the channel structures. The semiconductor device structure further includes a gate stack wrapped around each of the channel structures and a backside conductive contact connected to the second epitaxial structure. A first portion of the backside conductive contact is directly below the base structure, and a second portion of the backside conductive contact extends upwards to approach a bottom surface of the second epitaxial structure. In addition, the semiconductor device structure includes an insulating spacer between a sidewall of the base structure and the backside conductive contact.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: May 7, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Huan-Chieh Su, Chun-Yuan Chen, Li-Zhen Yu, Shih-Chuan Chiu, Cheng-Chi Chuang, Chih-Hao Wang
  • Publication number: 20240145562
    Abstract: The present disclosure describes a method to form a backside power rail (BPR) semiconductor device with an air gap. The method includes forming a fin structure on a first side of a substrate, forming a source/drain (S/D) region adjacent to the fin structure, forming a first S/D contact structure on the first side of the substrate and in contact with the S/D region, and forming a capping structure on the first S/D contact structure. The method further includes removing a portion of the first S/D contact structure through the capping structure to form an air gap and forming a second S/D contact structure on a second side of the substrate and in contact with the S/D region. The second side is opposite to the first side.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 2, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Zhen YU, Lin-Yu HUANG, Cheng-Chi CHUANG, Chih-Hao WANG, Huan-Chieh SU
  • Patent number: 11955515
    Abstract: A semiconductor device with dual side source/drain (S/D) contact structures and a method of fabricating the same are disclosed. The method includes forming a fin structure on a substrate, forming a superlattice structure on the fin structure, forming first and second S/D regions within the superlattice structure, forming a gate structure between the first and second S/D regions, forming first and second contact structures on first surfaces of the first and second S/D regions, and forming a third contact structure, on a second surface of the first S/D region, with a work function metal (WFM) silicide layer and a dual metal liner. The second surface is opposite to the first surface of the first S/D region and the WFM silicide layer has a work function value closer to a conduction band energy than a valence band energy of a material of the first S/D region.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Chuan Chiu, Chia-Hao Chang, Cheng-Chi Chuang, Chih-Hao Wang, Huan-Chieh Su, Chun-Yuan Chen, Li-Zhen Yu, Yu-Ming Lin
  • Patent number: 11955552
    Abstract: A semiconductor device structure includes a source/drain feature comprising a first surface, a second surface opposing the first surface, and a sidewall connecting the first surface to the second surface. The structure also includes a dielectric layer having a continuous surface in contact with the entire second surface of the source/drain feature, a semiconductor layer having a first surface, a second surface opposing the first surface, and a sidewall connecting the first surface to the second surface, wherein the sidewall of the semiconductor layer is in contact with the sidewall of the source/drain feature. The structure also includes a gate dielectric layer in contact with the continuous surface of the dielectric layer and the second surface of the semiconductor layer, and a gate electrode layer surrounding a portion of the semiconductor layer.
    Type: Grant
    Filed: November 14, 2022
    Date of Patent: April 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Li-Zhen Yu, Huan-Chieh Su, Shih-Chuan Chiu, Lin-Yu Huang, Cheng-Chi Chuang, Chih-Hao Wang
  • Publication number: 20240096996
    Abstract: A semiconductor device includes a first dielectric layer, a stack of semiconductor layers disposed over the first dielectric layer, a gate structure wrapping around each of the semiconductor layers and extending lengthwise along a direction, and a dielectric fin structure and an isolation structure disposed on opposite sides of the stack of semiconductor layers and embedded in the gate structure. The dielectric fin structure has a first width along the direction smaller than a second width of the isolation structure along the direction. The isolation structure includes a second dielectric layer extending through the gate structure and the first dielectric layer, and a third dielectric layer extending through the first dielectric layer and disposed on a bottom surface of the gate structure and a sidewall of the first dielectric layer.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Huan-Chieh Su, Chun-Yuan Chen, Li-Zhen Yu, Lo-Heng Chang, Cheng-Chi Chuang, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11935794
    Abstract: A method of forming a semiconductor transistor device. The method comprises forming a channel structure over a substrate and forming a first source/drain structure and a second source/drain structure on opposite sides of the fin structure. The method further comprises forming a gate structure surrounding the fin structure. The method further comprises flipping and partially removing the substrate to form a back-side capping trench while leaving a lower portion of the substrate along upper sidewalls of the first source/drain structure and the second source/drain structure as a protective spacer. The method further comprises forming a back-side dielectric cap in the back-side capping trench.
    Type: Grant
    Filed: December 12, 2022
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Huan-Chieh Su, Cheng-Chi Chuang, Chih-Hao Wang, Zhi-Chang Lin, Li-Zhen Yu
  • Publication number: 20240087949
    Abstract: In some embodiments, the present disclosure relates to an integrated chip structure. The integrated chip structure includes a substrate. A gate electrode is over the substrate and a spacer structure laterally surrounds the gate electrode. A conductive via is disposed on the gate electrode. A liner is arranged along one or more sidewalls of the spacer structure. The conductive via has a bottommost surface that has a larger width than a part of the conductive via that is laterally adjacent to one or more interior sidewalls of the liner.
    Type: Application
    Filed: November 16, 2023
    Publication date: March 14, 2024
    Inventors: Li-Zhen Yu, Cheng-Chi Chuang, Chih-Hao Wang, Yu-Ming Lin, Lin-Yu Huang
  • Patent number: 11929321
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first insulating layer over a substrate. A first metal feature is formed in the first insulating layer and a second insulating layer is formed over the first insulating layer. A first metal via is formed through the second insulating layer to connect the first metal feature. A second metal feature is formed over the second insulating layer. The second metal feature has a convex top surface and a plane bottom surface, and the plane bottom is electrically connected to the first metal feature through the first metal via.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: March 12, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Zhen Yu, Lin-Yu Huang, Cheng-Chi Chuang, Yu-Ming Lin, Chih-Hao Wang
  • Patent number: 11923408
    Abstract: A semiconductor structure includes one or more channel layers; a gate structure engaging the one or more channel layers; a first source/drain feature connected to a first side of the one or more channel layers and adjacent to the gate structure; a first dielectric cap disposed over the first source/drain feature, wherein a bottom surface of the first dielectric cap is below a top surface of the gate structure; a first via disposed under and electrically connected to the first source/drain feature; and a power rail disposed under and electrically connected to the first via.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: March 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Li-Zhen Yu, Huan-Chieh Su, Lin-Yu Huang, Cheng-Chi Chuang, Chih-Hao Wang
  • Patent number: 11916133
    Abstract: Semiconductor devices and methods of forming the same are provided. In one embodiment, a semiconductor device includes a gate structure sandwiched between and in contact with a first spacer feature and a second spacer feature, a top surface of the first spacer feature and a top surface of the second spacer feature extending above a top surface of the gate structure, a gate self-aligned contact (SAC) dielectric feature over the first spacer feature and the second spacer feature, a contact etch stop layer (CESL) over the gate SAC dielectric feature, a dielectric layer over the CESL, a gate contact feature extending through the dielectric layer, the CESL, the gate SAC dielectric feature, and between the first spacer feature and the second spacer feature to be in contact with the gate structure, and a liner disposed between the first spacer feature and the gate contact feature.
    Type: Grant
    Filed: February 21, 2022
    Date of Patent: February 27, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Li-Zhen Yu, Lin-Yu Huang, Chia-Hao Chang, Cheng-Chi Chuang, Yu-Ming Lin, Chih-Hao Wang
  • Patent number: 11915972
    Abstract: Semiconductor devices including air spacers formed in a backside interconnect structure and methods of forming the same are disclosed. In an embodiment, a device includes a first transistor structure; a front-side interconnect structure on a front-side of the first transistor structure; and a backside interconnect structure on a backside of the first transistor structure, the backside interconnect structure including a first dielectric layer on the backside of the first transistor structure; a first via extending through the first dielectric layer, the first via being electrically coupled to a first source/drain region of the first transistor structure; a first conductive line electrically coupled to the first via; and an air spacer adjacent the first conductive line, the first conductive line defining a first side boundary of the air spacer.
    Type: Grant
    Filed: July 15, 2022
    Date of Patent: February 27, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Li-Zhen Yu, Huan-Chieh Su, Lin-Yu Huang, Cheng-Chi Chuang, Chih-Hao Wang
  • Publication number: 20240055480
    Abstract: A method includes forming fin structures upwardly extending above a semiconductor substrate; conformally depositing a first dielectric layer over the fin structures; depositing a flowable oxide over the first dielectric layer and between the fin structures; performing, at a temperature lower than about 500° C., a steam annealing process on the flowable oxide to cure the flowable oxide; after performing the steam annealing process, etching the cured flowable oxide until a top surface of the cured flowable oxide is lower than top surfaces of the fin structures; forming a second dielectric layer over the cured flowable oxide; forming a first gate structure extending across a first one of the fin structures and a second gate structure extending across a second one of the fin structures; forming first sources/drain regions on the first one of the fin structures and second sources/drain regions on the second one of the fin structures.
    Type: Application
    Filed: August 12, 2022
    Publication date: February 15, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yun Chen TENG, Chen-Fong TSAI, Li-Chi YU, Huicheng CHANG, Yee-Chia YEO
  • Publication number: 20230144899
    Abstract: A method of manufacturing a semiconductor device includes forming a multi-layer stack of alternating first layers of a first semiconductor material and second layers of a second semiconductor material on a semiconductor substrate, forming a first recess through the multi-layer stack, and laterally recessing sidewalls of the second layers of the multi-layer stack. The sidewalls are adjacent to the first recess. The method further includes forming inner spacers with respective seams adjacent to the recessed second layers of the multi-layer stack and performing an anneal treatment on the inner spacers to close the respective seams.
    Type: Application
    Filed: January 3, 2023
    Publication date: May 11, 2023
    Inventors: Yoh-Rong Liu, Wen-Kai Lin, Che-Hao Chang, Chi On Chui, Yung-Cheng Lu, Li-Chi Yu, Sen-Hong Syue
  • Publication number: 20230042726
    Abstract: FCVD using multi-step anneal treatment and devices thereof are disclosed. In an embodiment, a method includes depositing a flowable dielectric film on a substrate. The flowable dielectric film is deposited between a first semiconductor fin and a second semiconductor fin. The method further includes annealing the flowable dielectric film at a first anneal temperature for at least 5 hours to form a first dielectric film, annealing the first dielectric film at a second anneal temperature higher than the first anneal temperature to form a second dielectric film, annealing the second dielectric film at a third anneal temperature higher than the first anneal temperature to form an insulating layer, applying a planarization process to the insulating layer, and etching the insulating layer to STI regions on the substrate.
    Type: Application
    Filed: May 6, 2022
    Publication date: February 9, 2023
    Inventors: Yun Chen Teng, Chen-Fong Tsai, Li-Chi Yu, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11545559
    Abstract: A method of manufacturing a semiconductor device includes forming a multi-layer stack of alternating first layers of a first semiconductor material and second layers of a second semiconductor material on a semiconductor substrate, forming a first recess through the multi-layer stack, and laterally recessing sidewalls of the second layers of the multi-layer stack. The sidewalls are adjacent to the first recess. The method further includes forming inner spacers with respective seams adjacent to the recessed second layers of the multi-layer stack and performing an anneal treatment on the inner spacers to close the respective seams.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: January 3, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yoh-Rong Liu, Wen-Kai Lin, Che-Hao Chang, Chi On Chui, Yung-Cheng Lu, Li-Chi Yu, Sen-Hong Syue
  • Publication number: 20220336636
    Abstract: A method of manufacturing a semiconductor device includes forming a multi-layer stack of alternating first layers of a first semiconductor material and second layers of a second semiconductor material on a semiconductor substrate, forming a first recess through the multi-layer stack, and laterally recessing sidewalls of the second layers of the multi-layer stack. The sidewalls are adjacent to the first recess. The method further includes forming inner spacers with respective seams adjacent to the recessed second layers of the multi-layer stack and performing an anneal treatment on the inner spacers to close the respective seams.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 20, 2022
    Inventors: Yoh-Rong Liu, Wen-Kai Lin, Che-Hao Chang, Chi On Chui, Yung-Cheng Lu, Li-Chi Yu, Sen-Hong Syue
  • Publication number: 20220262925
    Abstract: Embodiments include nanostructure devices and methods of forming nanostructure devices which include a treatment process to expand a sidewall spacer material to close a seam in the sidewall spacer material after deposition. The treatment process includes oxidation anneal and heat anneal to expand the sidewall spacer material and crosslink the open seam to form a closed seam, lower k-value, and decrease density.
    Type: Application
    Filed: May 17, 2021
    Publication date: August 18, 2022
    Inventors: Li-Chi Yu, Cheng-I Chu, Chen-Fong Tsai, Yi-Rui Chen, Sen-Hong Syue, Wen-Kai Lin, Yoh-Rong Liu, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 10115597
    Abstract: A device having an epitaxial region and dual metal-semiconductor alloy surfaces is provided. The epitaxial region includes an upward facing facet and a downward facing facet. The upward facing facet has a first metal-semiconductor alloy surface and the downward facing facet has a second metal-semiconductor alloy surface, wherein the first metal-semiconductor alloy is different than the second metal-semiconductor alloy.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: October 30, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Chi-Yuan Shih, Gin-Chen Huang, Clement Hsingjen Wann, Li-Chi Yu, Chin-Hsiang Lin, Ling-Yen Yeh, Meng-Chun Chang, Neng-Kuo Chen, Sey-Ping Sun, Ta-Chun Ma, Yen-Chun Huang
  • Publication number: 20170140942
    Abstract: A device having an epitaxial region and dual metal-semiconductor alloy surfaces is provided. The epitaxial region includes an upward facing facet and a downward facing facet. The upward facing facet has a first metal-semiconductor alloy surface and the downward facing facet has a second metal-semiconductor alloy surface, wherein the first metal-semiconductor alloy is different than the second metal-semiconductor alloy.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Inventors: Chun Hsiung Tsai, Chi-Yuan Shih, Gin-Chen Huang, Clement Hsingjen Wann, Li-Chi Yu, Chin-Hsiang Lin, Ling-Yen Yeh, Meng-Chun Chang, Neng-Kuo Chen, Sey-Ping Sun, Ta-Chun Ma, Yen-Chun Huang
  • Patent number: 9559182
    Abstract: A device having an epitaxial region and dual metal-semiconductor alloy surfaces is provided. The epitaxial region includes an upward facing facet and a downward facing facet. The upward facing facet has a first metal-semiconductor alloy surface and the downward facing facet has a second metal-semiconductor alloy surface, wherein the first metal-semiconductor alloy is different than the second metal-semiconductor alloy.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: January 31, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Sey-Ping Sun, Ling-Yen Yeh, Chi-Yuan Shih, Li-Chi Yu, Chun Hsiung Tsai, Chin-Hsiang Lin, Neng-Kuo Chen, Meng-Chun Chang, Ta-Chun Ma, Gin-Chen Huang, Yen-Chun Huang