Patents by Inventor Li-Chi Yu
Li-Chi Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12266574Abstract: FCVD using multi-step anneal treatment and devices thereof are disclosed. In an embodiment, a method includes depositing a flowable dielectric film on a substrate. The flowable dielectric film is deposited between a first semiconductor fin and a second semiconductor fin. The method further includes annealing the flowable dielectric film at a first anneal temperature for at least 5 hours to form a first dielectric film, annealing the first dielectric film at a second anneal temperature higher than the first anneal temperature to form a second dielectric film, annealing the second dielectric film at a third anneal temperature higher than the first anneal temperature to form an insulating layer, applying a planarization process to the insulating layer, and etching the insulating layer to STI regions on the substrate.Type: GrantFiled: May 6, 2022Date of Patent: April 1, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Yun Chen Teng, Chen-Fong Tsai, Li-Chi Yu, Huicheng Chang, Yee-Chia Yeo
-
Publication number: 20240332401Abstract: Embodiments include nanostructure devices and methods of forming nanostructure devices which include a treatment process to expand a sidewall spacer material to close a seam in the sidewall spacer material after deposition. The treatment process includes oxidation anneal and heat anneal to expand the sidewall spacer material and crosslink the open seam to form a closed seam, lower k-value, and decrease density.Type: ApplicationFiled: June 13, 2024Publication date: October 3, 2024Inventors: Li-Chi Yu, Cheng-I Chu, Chen-Fong Tsai, Yi-Rui Chen, Sen-Hong Syue, Wen-Kai Lin, Yoh-Rong Liu, Huicheng Chang, Yee-Chia Yeo
-
Patent number: 12040382Abstract: Embodiments include nanostructure devices and methods of forming nanostructure devices which include a treatment process to expand a sidewall spacer material to close a seam in the sidewall spacer material after deposition. The treatment process includes oxidation anneal and heat anneal to expand the sidewall spacer material and crosslink the open seam to form a closed seam, lower k-value, and decrease density.Type: GrantFiled: May 17, 2021Date of Patent: July 16, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Li-Chi Yu, Cheng-I Chu, Chen-Fong Tsai, Yi-Rui Chen, Sen-Hong Syue, Wen-Kai Lin, Yoh-Rong Liu, Huicheng Chang, Yee-Chia Yeo
-
Publication number: 20240194765Abstract: A method of manufacturing a semiconductor device includes forming a multi-layer stack of alternating first layers of a first semiconductor material and second layers of a second semiconductor material on a semiconductor substrate, forming a first recess through the multi-layer stack, and laterally recessing sidewalls of the second layers of the multi-layer stack. The sidewalls are adjacent to the first recess. The method further includes forming inner spacers with respective seams adjacent to the recessed second layers of the multi-layer stack and performing an anneal treatment on the inner spacers to close the respective seams.Type: ApplicationFiled: January 29, 2024Publication date: June 13, 2024Inventors: Yoh-Rong Liu, Wen-Kai Lin, Che-Hao Chang, Chi On Chui, Yung-Cheng Lu, Li-Chi Yu, Sen-Hong Syue
-
Patent number: 11923432Abstract: A method of manufacturing a semiconductor device includes forming a multi-layer stack of alternating first layers of a first semiconductor material and second layers of a second semiconductor material on a semiconductor substrate, forming a first recess through the multi-layer stack, and laterally recessing sidewalls of the second layers of the multi-layer stack. The sidewalls are adjacent to the first recess. The method further includes forming inner spacers with respective seams adjacent to the recessed second layers of the multi-layer stack and performing an anneal treatment on the inner spacers to close the respective seams.Type: GrantFiled: January 3, 2023Date of Patent: March 5, 2024Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Yoh-Rong Liu, Wen-Kai Lin, Che-Hao Chang, Chi On Chui, Yung-Cheng Lu, Li-Chi Yu, Sen-Hong Syue
-
Publication number: 20240055480Abstract: A method includes forming fin structures upwardly extending above a semiconductor substrate; conformally depositing a first dielectric layer over the fin structures; depositing a flowable oxide over the first dielectric layer and between the fin structures; performing, at a temperature lower than about 500° C., a steam annealing process on the flowable oxide to cure the flowable oxide; after performing the steam annealing process, etching the cured flowable oxide until a top surface of the cured flowable oxide is lower than top surfaces of the fin structures; forming a second dielectric layer over the cured flowable oxide; forming a first gate structure extending across a first one of the fin structures and a second gate structure extending across a second one of the fin structures; forming first sources/drain regions on the first one of the fin structures and second sources/drain regions on the second one of the fin structures.Type: ApplicationFiled: August 12, 2022Publication date: February 15, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yun Chen TENG, Chen-Fong TSAI, Li-Chi YU, Huicheng CHANG, Yee-Chia YEO
-
Publication number: 20230144899Abstract: A method of manufacturing a semiconductor device includes forming a multi-layer stack of alternating first layers of a first semiconductor material and second layers of a second semiconductor material on a semiconductor substrate, forming a first recess through the multi-layer stack, and laterally recessing sidewalls of the second layers of the multi-layer stack. The sidewalls are adjacent to the first recess. The method further includes forming inner spacers with respective seams adjacent to the recessed second layers of the multi-layer stack and performing an anneal treatment on the inner spacers to close the respective seams.Type: ApplicationFiled: January 3, 2023Publication date: May 11, 2023Inventors: Yoh-Rong Liu, Wen-Kai Lin, Che-Hao Chang, Chi On Chui, Yung-Cheng Lu, Li-Chi Yu, Sen-Hong Syue
-
Publication number: 20230042726Abstract: FCVD using multi-step anneal treatment and devices thereof are disclosed. In an embodiment, a method includes depositing a flowable dielectric film on a substrate. The flowable dielectric film is deposited between a first semiconductor fin and a second semiconductor fin. The method further includes annealing the flowable dielectric film at a first anneal temperature for at least 5 hours to form a first dielectric film, annealing the first dielectric film at a second anneal temperature higher than the first anneal temperature to form a second dielectric film, annealing the second dielectric film at a third anneal temperature higher than the first anneal temperature to form an insulating layer, applying a planarization process to the insulating layer, and etching the insulating layer to STI regions on the substrate.Type: ApplicationFiled: May 6, 2022Publication date: February 9, 2023Inventors: Yun Chen Teng, Chen-Fong Tsai, Li-Chi Yu, Huicheng Chang, Yee-Chia Yeo
-
Patent number: 11545559Abstract: A method of manufacturing a semiconductor device includes forming a multi-layer stack of alternating first layers of a first semiconductor material and second layers of a second semiconductor material on a semiconductor substrate, forming a first recess through the multi-layer stack, and laterally recessing sidewalls of the second layers of the multi-layer stack. The sidewalls are adjacent to the first recess. The method further includes forming inner spacers with respective seams adjacent to the recessed second layers of the multi-layer stack and performing an anneal treatment on the inner spacers to close the respective seams.Type: GrantFiled: April 14, 2021Date of Patent: January 3, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Yoh-Rong Liu, Wen-Kai Lin, Che-Hao Chang, Chi On Chui, Yung-Cheng Lu, Li-Chi Yu, Sen-Hong Syue
-
Publication number: 20220336636Abstract: A method of manufacturing a semiconductor device includes forming a multi-layer stack of alternating first layers of a first semiconductor material and second layers of a second semiconductor material on a semiconductor substrate, forming a first recess through the multi-layer stack, and laterally recessing sidewalls of the second layers of the multi-layer stack. The sidewalls are adjacent to the first recess. The method further includes forming inner spacers with respective seams adjacent to the recessed second layers of the multi-layer stack and performing an anneal treatment on the inner spacers to close the respective seams.Type: ApplicationFiled: April 14, 2021Publication date: October 20, 2022Inventors: Yoh-Rong Liu, Wen-Kai Lin, Che-Hao Chang, Chi On Chui, Yung-Cheng Lu, Li-Chi Yu, Sen-Hong Syue
-
Publication number: 20220262925Abstract: Embodiments include nanostructure devices and methods of forming nanostructure devices which include a treatment process to expand a sidewall spacer material to close a seam in the sidewall spacer material after deposition. The treatment process includes oxidation anneal and heat anneal to expand the sidewall spacer material and crosslink the open seam to form a closed seam, lower k-value, and decrease density.Type: ApplicationFiled: May 17, 2021Publication date: August 18, 2022Inventors: Li-Chi Yu, Cheng-I Chu, Chen-Fong Tsai, Yi-Rui Chen, Sen-Hong Syue, Wen-Kai Lin, Yoh-Rong Liu, Huicheng Chang, Yee-Chia Yeo
-
Patent number: 10115597Abstract: A device having an epitaxial region and dual metal-semiconductor alloy surfaces is provided. The epitaxial region includes an upward facing facet and a downward facing facet. The upward facing facet has a first metal-semiconductor alloy surface and the downward facing facet has a second metal-semiconductor alloy surface, wherein the first metal-semiconductor alloy is different than the second metal-semiconductor alloy.Type: GrantFiled: January 30, 2017Date of Patent: October 30, 2018Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chun Hsiung Tsai, Chi-Yuan Shih, Gin-Chen Huang, Clement Hsingjen Wann, Li-Chi Yu, Chin-Hsiang Lin, Ling-Yen Yeh, Meng-Chun Chang, Neng-Kuo Chen, Sey-Ping Sun, Ta-Chun Ma, Yen-Chun Huang
-
Publication number: 20170140942Abstract: A device having an epitaxial region and dual metal-semiconductor alloy surfaces is provided. The epitaxial region includes an upward facing facet and a downward facing facet. The upward facing facet has a first metal-semiconductor alloy surface and the downward facing facet has a second metal-semiconductor alloy surface, wherein the first metal-semiconductor alloy is different than the second metal-semiconductor alloy.Type: ApplicationFiled: January 30, 2017Publication date: May 18, 2017Inventors: Chun Hsiung Tsai, Chi-Yuan Shih, Gin-Chen Huang, Clement Hsingjen Wann, Li-Chi Yu, Chin-Hsiang Lin, Ling-Yen Yeh, Meng-Chun Chang, Neng-Kuo Chen, Sey-Ping Sun, Ta-Chun Ma, Yen-Chun Huang
-
Patent number: 9559182Abstract: A device having an epitaxial region and dual metal-semiconductor alloy surfaces is provided. The epitaxial region includes an upward facing facet and a downward facing facet. The upward facing facet has a first metal-semiconductor alloy surface and the downward facing facet has a second metal-semiconductor alloy surface, wherein the first metal-semiconductor alloy is different than the second metal-semiconductor alloy.Type: GrantFiled: December 14, 2015Date of Patent: January 31, 2017Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Clement Hsingjen Wann, Sey-Ping Sun, Ling-Yen Yeh, Chi-Yuan Shih, Li-Chi Yu, Chun Hsiung Tsai, Chin-Hsiang Lin, Neng-Kuo Chen, Meng-Chun Chang, Ta-Chun Ma, Gin-Chen Huang, Yen-Chun Huang
-
Patent number: 9379108Abstract: A method of fabricating a semiconductor device comprises forming a fin structure extending from a substrate, the fin structure comprising a first fin, a second fin, and a third fin between the first fin and the second fin. The method further comprises forming germanide over a first facet of the first fin, a second facet of the second fin, and a substantially planar surface of the third fin, wherein the first facet forms a first acute angle with a major surface of the substrate and is substantially mirror symmetric with the second facet, and wherein the substantially planar surface of the third fin forms a second acute angle smaller than the first acute angle with the major surface of the substrate.Type: GrantFiled: April 30, 2015Date of Patent: June 28, 2016Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Wen Liu, Chi-Yuan Shih, Li-Chi Yu, Meng-Chun Chang, Ting-Chu Ko, Chung-Hsien Chen
-
Publication number: 20160099331Abstract: A device having an epitaxial region and dual metal-semiconductor alloy surfaces is provided. The epitaxial region includes an upward facing facet and a downward facing facet. The upward facing facet has a first metal-semiconductor alloy surface and the downward facing facet has a second metal-semiconductor alloy surface, wherein the first metal-semiconductor alloy is different than the second metal-semiconductor alloy.Type: ApplicationFiled: December 14, 2015Publication date: April 7, 2016Inventors: Clement Hsingjen Wann, Sey-Ping Sun, Ling-Yen Yeh, Chi-Yuan Shih, Li-Chi Yu, Chun Hsiung Tsai, Chin-Hsiang Lin, Neng-Kuo Chen, Meng-Chun Chang, Ta-Chun Ma, Gin-Chen Huang, Yen-Chun Huang
-
Patent number: 9214556Abstract: A method includes growing an epitaxy semiconductor region at a major surface of a wafer. The epitaxy semiconductor region has an upward facing facet facing upwardly and a downward facing facet facing downwardly. The method further includes forming a first metal silicide layer contacting the upward facing facet, and forming a second metal silicide layer contacting the downward facing facet. The first metal silicide layer and the second metal silicide layer comprise different metals.Type: GrantFiled: August 9, 2013Date of Patent: December 15, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Clement Hsingjen Wann, Sey-Ping Sun, Ling-Yen Yeh, Chi-Yuan Shih, Li-Chi Yu, Chun Hsiung Tsai, Chin-Hsiang Lin, Neng-Kuo Chen, Meng-Chun Chang, Ta-Chun Ma, Gin-Chen Huang, Yen-Chun Huang
-
Publication number: 20150236016Abstract: A method of fabricating a semiconductor device comprises forming a fin structure extending from a substrate, the fin structure comprising a first fin, a second fin, and a third fin between the first fin and the second fin. The method further comprises forming germanide over a first facet of the first fin, a second facet of the second fin, and a substantially planar surface of the third fin, wherein the first facet forms a first acute angle with a major surface of the substrate and is substantially mirror symmetric with the second facet, and wherein the substantially planar surface of the third fin forms a second acute angle smaller than the first acute angle with the major surface of the substrate.Type: ApplicationFiled: April 30, 2015Publication date: August 20, 2015Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Wen Liu, Chi-Yuan Shih, Li-Chi Yu, Meng-Chun Chang, Ting-Chu Ko, Chung-Hsien Chen
-
Patent number: 9048317Abstract: The disclosure relates to a semiconductor device. An exemplary structure for a contact structure for a semiconductor device comprises a substrate comprising a major surface; a fin structure extending upward from the substrate major surface, wherein the fin structure comprises a first fin, a second fin, and a third fin between the first fin and second fin; a first germanide over the first fin, wherein a first bottom surface of the first germanide has a first acute angle to the major surface; a second germanide over the second fin on a side of the third fin opposite to first germanide substantially mirror-symmetrical to each other; and a third germanide over the third fin, wherein a third bottom surface of the third germanide has a third acute angle to the major surface less than the first acute angle.Type: GrantFiled: July 31, 2013Date of Patent: June 2, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Wen Liu, Chi-Yuan Shih, Li-Chi Yu, Meng-Chun Chang, Ting-Chu Ko, Chung-Hsien Chen
-
Publication number: 20150041918Abstract: A method includes growing an epitaxy semiconductor region at a major surface of a wafer. The epitaxy semiconductor region has an upward facing facet facing upwardly and a downward facing facet facing downwardly. The method further includes forming a first metal silicide layer contacting the upward facing facet, and forming a second metal silicide layer contacting the downward facing facet. The first metal silicide layer and the second metal silicide layer comprise different metals.Type: ApplicationFiled: August 9, 2013Publication date: February 12, 2015Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Clement Hsingjen Wann, Sey-Ping Sun, Ling-Yen Yeh, Chi-Yuan Shih, Li-Chi Yu, Chun Hsiung Tsai, Chin-Hsiang Lin, Neng-Kuo Chen, Meng-Chun Chang, Ta-Chun Ma, Gin-Chen Huang, Yen-Chun Huang