Patents by Inventor Li Jiang

Li Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200059446
    Abstract: Methods, systems, and computer program products for enhancing a plurality of electronic communication systems for a plurality of users include, for example, providing data regarding at least one project, and linking the data regarding the at least one project with the plurality of electronic communication systems regarding the plurality of electronic communications for the plurality of users.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 20, 2020
    Inventors: Liang Liang DAI, Li GU, Jing Bo JIANG, Li JIANG, Yang LIU, Xue Ying ZHANG
  • Patent number: 10562772
    Abstract: The disclosure relates to a device for making carbon nanotube structure. The device includes: an elastic rod including a first end and a second end opposite to the first end; and a controller connected to the first end and the second end respectively, wherein the controller is configured to rotate the elastic rod around a rotational axis which coincides with a center axis of the elastic rod.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: February 18, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jiang-Tao Wang, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10563325
    Abstract: A method for making carbon fiber film includes growing a carbon nanotube array on a surface of a growth substrate. A carbon nanotube film is pulled out from the carbon nanotube array, and pass through a reaction room. A negative voltage is applied to the carbon nanotube film. A carrier gas and a carbon source gas are supplied to the reaction room to form graphite sheets on the carbon nanotube film.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: February 18, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jiang-Tao Wang, Wei Zhao, Peng Liu, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10550790
    Abstract: An engine system uses data associated with at least one operating condition of an engine to set the engine system to an AI mode when the engine is in an SI mode 1) within first operating condition limits, and 2) when a rate of change of a first operating condition is within rate of change limits, maintain the engine system in the SI mode when the engine is outside of first operating condition limits or when the rate of change of the first operating condition is not within rate of change limits, set the engine system to the SI mode when the engine is in the AI mode outside second operating condition limits, and maintain the engine system in the AI mode when the engine is within second operating condition limits, wherein the second operating condition limits are different from the first operating condition limits.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: February 4, 2020
    Assignees: Robert Bosch LLC, Robert Bosch GmbH
    Inventors: Nikhil Ravi, Joel Oudart, Shyam Jade, Jason Schwanke, Li Jiang
  • Patent number: 10553447
    Abstract: Semiconductor structures and fabrication methods thereof are provided. An exemplary fabrication process includes providing a base substrate; forming a carbon-containing dielectric layer over the base substrate; and performing a chemical mechanical polishing (CMP) process on the carbon-containing dielectric layer. The chemical mechanical polishing process includes performing a plurality of polishing processes on the carbon-containing dielectric layer and a weak acid solution is used to clean a polishing pad before and after each of the polishing processes.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: February 4, 2020
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventor: Li Jiang
  • Patent number: 10553982
    Abstract: An electrical connector includes an insulative housing and a number of terminals retained in the insulative housing. The insulative housing has a mating surface, a mounting surface, and a slot going through the mounting surface. The terminal received in the slot includes an interference portion retained in the slot, a contacting portion disposed around the mating surface, and a soldering leg extending downwardly beyond the mounting surface. The interference portion has two barbs disposed at two opposite sides thereof, respectively. The terminal includes a blocking portion connecting between the interference portion and the soldering leg. The width of the blocking portion is greater than the width of the interference portion.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: February 4, 2020
    Assignee: FOXCONN INTERCONNECT TECHNOLOGY LIMITED
    Inventors: Lu-Lu Sha, Guo-Hua Zhang, Li-Jiang Wang
  • Patent number: 10551924
    Abstract: An electronic device having a user interface device that has a flexible surface, a haptic output device operatively coupled to the flexible surface and configured to cause a deformation of the flexible surface, and a controller in signal communication with the haptic output device. The controller is configured to trigger the haptic output device to cause the deformation of the flexible surface based on a simulated physical behavior of a virtual element represented on the user interface.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: February 4, 2020
    Assignee: Immersion Corporation
    Inventors: David M. Birnbaum, Li Jiang, Juan Manuel Cruz-Hernandez, Ali Modarres, Christophe Ramstein, Danny A. Grant
  • Patent number: 10547833
    Abstract: An improved method, system, and apparatus is provided to perform camera calibration, where cameras are mounted onto a moving conveyance apparatus to capture images of a multi-planar calibration target. The calibration process is optimized by reducing the number of images captured while simultaneously preserving overall information density.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: January 28, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Jeffrey Steven Kranski, Frederick Dennis Zyda, Grace Vesom, Grace Shin-Yee Tsai, Jeremy A. Grata, Zhiheng Jia, Li Jiang
  • Patent number: 10533247
    Abstract: A method for growing carbon nanotubes is provided. A reactor including a reactor chamber and a substrate located in the reactor chamber is provide. The substrate is a hollow structure including a sidewall and a bottom. The hollow structure also defines an opening. The sidewall includes a carbon nanotube layer and catalyst particles dispersed in the carbon nanotube layer. A mixture of carbon source gas and carrier gas is introduced into the reactor chamber so that the mixture of carbon source gas and carrier gas flows into the hollow structure from the opening and out of the hollow structure through the sidewall. The hollow structure is heated.
    Type: Grant
    Filed: November 13, 2016
    Date of Patent: January 14, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yang Wu, Peng Liu, Yang Wei, Jia-Ping Wang, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10529979
    Abstract: The present disclosure relates to a method for making a lithium-ion battery anode. The method comprises the steps of scratching off a carbon nanotube array to obtain a plurality of carbon nanotubes, adding the plurality of carbon nanotubes into a solvent, and ultrasonically dispersing the solvent to make the plurality of carbon nanotubes form a three-dimensional network-like structure; adding a titanium salt into the solvent, wherein the titanium salt hydrolyzes to form a plurality of titanium dioxide particles, and the plurality of titanium dioxide particles are adsorbed on surfaces of the plurality of carbon nanotubes; and separating the nanotube three-dimensional network structure from the solvent to form a precursor, and drying the precursor to form a titanium dioxide-carbon nanotube composite film.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: January 7, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Kun-Lei Zhu, Kai Liu, Jia-Ping Wang, Kai-Li Jiang, Shou-Shan Fan
  • Publication number: 20200006755
    Abstract: A method of making a stretchable composite electrode is provided. An elastic substrate is pre-stretched along a first direction and a second direction, to obtain a pre-stretched elastic substrate. A carbon nanotube active material composite layer is laid on a surface of the pre-stretched elastic substrate. And the pre-stretching of the elastic substrate is removed, and a plurality of wrinkles is formed on a surface of the carbon nanotube active material composite layer.
    Type: Application
    Filed: April 9, 2019
    Publication date: January 2, 2020
    Inventors: YANG YU, JIA-PING WANG, KAI-LI JIANG, SHOU-SHAN FAN
  • Publication number: 20200006772
    Abstract: A stretchable composite electrode comprising a carbon nanotube active material composite layer is provided. The stretchable composite electrode comprises a plurality of carbon nanotube film structures and a plurality of active material layers. Each of the plurality of active material layers is located between adjacent carbon nanotube film structures. Each of the plurality of carbon nanotube film structures comprises a plurality of super-aligned carbon nanotube films stacked with each other. A surface of the carbon nanotube active material composite layer comprises a plurality of wrinkles. A stretchable composite electrode using the stretchable composite electrode is also provided.
    Type: Application
    Filed: April 9, 2019
    Publication date: January 2, 2020
    Inventors: YANG YU, JIA-PING WANG, KAI-LI JIANG, SHOU-SHAN FAN
  • Publication number: 20200002170
    Abstract: A method of making a stretchable film structure is provided. An elastic substrate is pre-stretched in a first direction and a second direction to obtain a pre-stretched elastic substrate. A carbon nanotube film structure is laid on a surface of the pre-stretched elastic substrate. The carbon nanotube film structure comprises a plurality of super-aligned carbon nanotube films stacked with each other. The pre-stretching the elastic substrate is removed and a plurality of wrinkles is formed on a surface of the carbon nanotube film structure to form the stretchable film structure. The present disclosure also relates to the stretchable film structure obtained by the above method.
    Type: Application
    Filed: April 9, 2019
    Publication date: January 2, 2020
    Inventors: YANG YU, JIA-PING WANG, KAI-LI JIANG, SHOU-SHAN FAN
  • Publication number: 20200006014
    Abstract: A stretchable capacitor electrode-conductor structure includes a capacitor electrode and a conductor structure forming an integrated molding. The capacitor electrode includes a plurality of carbon nanotube layers, and an active substance layer is located between adjacent carbon nanotube layers. Both the carbon nanotube layer and the conductor structure include a plurality of super-aligned carbon nanotube films. A surface of the stretchable capacitor electrode-conductor structure comprises a plurality of wrinkles. A stretchable supercapacitor including the stretchable capacitor electrode-conductor structure is also provided.
    Type: Application
    Filed: April 9, 2019
    Publication date: January 2, 2020
    Inventors: YANG YU, JIA-PING WANG, KAI-LI JIANG, SHOU-SHAN FAN
  • Publication number: 20190382649
    Abstract: The embodiments described herein generally relate to methods and chemical compositions for use with wellbore treatment processes. In one embodiment, a composition is provided comprising a mineral acid and a retardation agent selected from the group of an amine containing compound, an amide containing compound, lignosulfonate, and combinations thereof.
    Type: Application
    Filed: June 19, 2018
    Publication date: December 19, 2019
    Inventors: Li Jiang, Jan Beetge
  • Patent number: 10497614
    Abstract: Semiconductor structures and fabrication methods are provided. An exemplary fabrication method includes providing a base substrate; forming a dielectric layer having an opening on the base substrate; forming a Ruthenium (Ru)-containing layer on side surfaces and a bottom of the opening and on a top surface of the dielectric layer; forming a Copper (Cu) containing layer to fill the opening and cover the Ruthenium (Ru)-containing layer; performing a first chemical mechanical polishing (CMP) step to remove a first partial thickness of the Copper (Cu)-containing layer; performing a second CMP step using a polishing slurry containing a Cu-corrosion-inhibitor to remove a second partial thickness of the Copper (Cu)-containing layer above the Ruthenium (Ru)-containing layer; and performing a third CMP step using a polishing slurry containing a Cu-corrosion-inhibitor to remove a third partial thickness of the Copper (Cu)-containing layer above the dielectric layer.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: December 3, 2019
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventor: Li Jiang
  • Patent number: 10487257
    Abstract: The embodiments described herein generally relate to methods and chemical compositions for use with cementing processes. In one embodiment, a composition is provided comprising a random tetracopolymer having the formula styrene-butadiene-acrylic-fumaric acid, a polyvinyl acetate, and a nonionic surfactant.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: November 26, 2019
    Assignee: HEXION INC.
    Inventors: Li Jiang, Jan Beetge, Franklin Leal, Elexander Salinas
  • Patent number: 10488265
    Abstract: An camera, the camera including: an photosensitive device and an image processor, wherein the photosensitive device includes a plurality of photosensitive units, a measuring device and a data processor; the plurality of photosensitive units are distributed in an array, wherein each photosensitive unit is configured to receive and convert light signal to form a temperature difference or a potential difference; the measuring device is configured to measure the temperature difference or the potential difference; a data processor is configured to analyze and calculate the potential difference or the temperature difference.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: November 26, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ling Zhang, Yang Wu, Kai-Li Jiang, Chang-Hong Liu, Jia-Ping Wang, Shou-Shan Fan
  • Patent number: 10489119
    Abstract: An application (“app”) may be associated with a web site, so that an online service may use the connection between the app and the web site. In one example, the online service is an information provider, such as a search engine or advertising engine. The online service provides a web administrator portal, through which a webmaster provides or generates a secret code. The webmaster gives the secret code to an app developer, who gives the code to an app store when the app is published. If the service provides information about the web site (e.g., as a search result or ad impression), the service may also provide an indication of the app, since the use of the code represents confirmation by both the webmaster and app developer that a relationship exists between the web site and the app.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: November 26, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Shajib Sadhukha, Amit Kumar, Michael Van Snellenberg, Li Jiang
  • Patent number: 10483231
    Abstract: A bonding method is provided. A sheet structure is placed on a substrate surface, and a surface roughness of a surface of the sheet structure is less than or equal to 1.0 micrometer. A carbon nanotube structure is laid on the surface of the sheet structure. Two ends of the carbon nanotube structure are in direct contact with the substrate surface. An organic solvent is added to the two ends of the carbon nanotube structure. An object is laid on the carbon nanotube structure, and a surface of the object being in direct contact with the carbon nanotube structure has a surface roughness less than or equal to 1.0 micrometer.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: November 19, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Xiang Jin, Zi-Peng Wu, Wen-Tao Miao, Kai-Li Jiang, Shou-Shan Fan