Patents by Inventor Li-Lin Su

Li-Lin Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240339406
    Abstract: Examples of an integrated circuit with an interconnect structure and a method for forming the integrated circuit are provided herein. In some examples, the method includes receiving a workpiece having an interconnect structure that includes a first conductive feature, a second conductive feature disposed beside the first conductive feature, and an inter-level dielectric disposed between the first conductive feature and the second conductive feature. A conductive material of an etch stop layer is selectively deposited on the first conductive feature and on the second conductive feature without depositing the conductive material on the inter-level dielectric, and the inter-level dielectric is removed to form a gap between the first conductive feature and the second conductive feature.
    Type: Application
    Filed: June 21, 2024
    Publication date: October 10, 2024
    Inventors: Tai-I Yang, Li-Lin Su, Yung-Hsu Wu, Hsin-Ping Chen, Cheng-Chi Chuang
  • Patent number: 12062611
    Abstract: Examples of an integrated circuit with an interconnect structure and a method for forming the integrated circuit are provided herein. In some examples, the method includes receiving a workpiece having an interconnect structure that includes a first conductive feature, a second conductive feature disposed beside the first conductive feature, and an inter-level dielectric disposed between the first conductive feature and the second conductive feature. A conductive material of an etch stop layer is selectively deposited on the first conductive feature and on the second conductive feature without depositing the conductive material on the inter-level dielectric, and the inter-level dielectric is removed to form a gap between the first conductive feature and the second conductive feature.
    Type: Grant
    Filed: February 7, 2022
    Date of Patent: August 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tai-I Yang, Li-Lin Su, Yung-Hsu Wu, Hsin-Ping Chen, Cheng-Chi Chuang
  • Publication number: 20240085803
    Abstract: Photolithography overlay errors are a source of patterning defects, which contribute to low wafer yield. An interconnect formation process that employs a patterning photolithography/etch process with self-aligned interconnects is disclosed herein. The interconnection formation process, among other things, improves a photolithography overlay (OVL) margin since alignment is accomplished on a wider pattern. In addition, the patterning photolithography/etch process supports multi-metal gap fill and low-k dielectric formation with voids.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Wei-Chen Chu, Hsiang-Wei Liu, Shau-Lin Shue, Li-Lin Su, Yung-Hsu Wu
  • Patent number: 11860550
    Abstract: Photolithography overlay errors are a source of patterning defects, which contribute to low wafer yield. An interconnect formation process that employs a patterning photolithography/etch process with self-aligned interconnects is disclosed herein. The interconnection formation process, among other things, improves a photolithography overlay (OVL) margin since alignment is accomplished on a wider pattern. In addition, the patterning photolithography/etch process supports multi-metal gap fill and low-k dielectric formation with voids.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: January 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Wei-Chen Chu, Hsiang-Wei Liu, Shau-Lin Shue, Li-Lin Su, Yung-Hsu Wu
  • Publication number: 20220350262
    Abstract: Photolithography overlay errors are a source of patterning defects, which contribute to low wafer yield. An interconnect formation process that employs a patterning photolithography/etch process with self-aligned interconnects is disclosed herein. The interconnection formation process, among other things, improves a photolithography overlay (OVL) margin since alignment is accomplished on a wider pattern. In addition, the patterning photolithography/etch process supports multi-metal gap fill and low-k dielectric formation with voids.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 3, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I YANG, Wei-Chen Chu, Hsiang-Wei Liu, Shau-Lin Shue, Li-Lin Su, Yung-Hsu Wu
  • Patent number: 11422475
    Abstract: Photolithography overlay errors are a source of patterning defects, which contribute to low wafer yield. An interconnect formation process that employs a patterning photolithography/etch process with self-aligned interconnects is disclosed herein. The interconnection formation process, among other things, improves a photolithography overlay (OVL) margin since alignment is accomplished on a wider pattern. In addition, the patterning photolithography/etch process supports multi-metal gap fill and low-k dielectric formation with voids.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: August 23, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Wei-Chen Chu, Hsiang-Wei Liu, Shau-Lin Shue, Li-Lin Su, Yung-Hsu Wu
  • Publication number: 20220157720
    Abstract: Examples of an integrated circuit with an interconnect structure and a method for forming the integrated circuit are provided herein. In some examples, the method includes receiving a workpiece having an interconnect structure that includes a first conductive feature, a second conductive feature disposed beside the first conductive feature, and an inter-level dielectric disposed between the first conductive feature and the second conductive feature. A conductive material of an etch stop layer is selectively deposited on the first conductive feature and on the second conductive feature without depositing the conductive material on the inter-level dielectric, and the inter-level dielectric is removed to form a gap between the first conductive feature and the second conductive feature.
    Type: Application
    Filed: February 7, 2022
    Publication date: May 19, 2022
    Inventors: Tai-I Yang, Li-Lin Su, Yung-Hsu Wu, Hsin-Ping Chen, Cheng-Chi Chuang
  • Patent number: 11251131
    Abstract: A device includes a conductive layer including a bottom portion, and a sidewall portion over the bottom portion, wherein the sidewall portion is connected to an end of the bottom portion. An aluminum-containing layer overlaps the bottom portion of the conductive layer, wherein a top surface of the aluminum-containing layer is substantially level with a top edge of the sidewall portion of the conductive layer. An aluminum oxide layer is overlying the aluminum-containing layer. A copper-containing region is over the aluminum oxide layer, and is spaced apart from the aluminum-containing layer by the aluminum oxide layer. The copper-containing region is electrically coupled to the aluminum-containing layer through the top edge of the sidewall portion of the conductive layer.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: February 15, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Lin Su, Ching-Hua Hsieh, Huang-Ming Chen, Hsueh Wen Tsau
  • Patent number: 11244898
    Abstract: Examples of an integrated circuit with an interconnect structure and a method for forming the integrated circuit are provided herein. In some examples, the method includes receiving a workpiece having an interconnect structure that includes a first conductive feature, a second conductive feature disposed beside the first conductive feature, and an inter-level dielectric disposed between the first conductive feature and the second conductive feature. A conductive material of an etch stop layer is selectively deposited on the first conductive feature and on the second conductive feature without depositing the conductive material on the inter-level dielectric, and the inter-level dielectric is removed to form a gap between the first conductive feature and the second conductive feature.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: February 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Tai-I Yang, Li-Lin Su, Yung-Hsu Wu, Hsin-Ping Chen, Cheng-Chi Chuang
  • Patent number: 11127680
    Abstract: In a method for manufacturing a semiconductor device, a dielectric layer is formed over a substrate. A first pattern and a second pattern are formed in the first interlayer dielectric layer. The first pattern has a width greater than a width of the second pattern. A first metal layer is formed in the first pattern and the second pattern. A second metal layer is formed in the first pattern. A planarization operation is performed on the first and second metal layers so that a first metal wiring by the first pattern and a second metal wiring by the second pattern are formed. A metal material of the first metal layer is different from a metal material of the second metal layer. The first metal wiring includes the first and second metal layers and the second metal wiring includes the first metal layer but does not include the second metal layer.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: September 21, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Kang Fu, Hsien-Chang Wu, Li-Lin Su, Ming-Han Lee, Shau-Lin Shue
  • Patent number: 11088020
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a conductive feature in a first dielectric layer. The semiconductor device structure also includes an etching stop layer over the first dielectric layer and a second dielectric layer over the etching stop layer. The semiconductor device structure further includes a conductive via in the etching stop layer and the second dielectric layer. In addition, the semiconductor device structure includes a conductive line over the conductive via. The semiconductor device structure also includes a first barrier liner covering the bottom surface of the conductive line. The semiconductor device structure further includes a second barrier liner surrounding sidewalls of the conductive line and the conductive via. The conductive line and the conductive via are confined in the first barrier liner and the second barrier liner.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: August 10, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Wei-Chen Chu, Li-Lin Su, Shin-Yi Yang, Cheng-Chi Chuang, Hsin-Ping Chen
  • Publication number: 20200321279
    Abstract: A device includes a conductive layer including a bottom portion, and a sidewall portion over the bottom portion, wherein the sidewall portion is connected to an end of the bottom portion. An aluminum-containing layer overlaps the bottom portion of the conductive layer, wherein a top surface of the aluminum-containing layer is substantially level with a top edge of the sidewall portion of the conductive layer. An aluminum oxide layer is overlying the aluminum-containing layer. A copper-containing region is over the aluminum oxide layer, and is spaced apart from the aluminum-containing layer by the aluminum oxide layer. The copper-containing region is electrically coupled to the aluminum-containing layer through the top edge of the sidewall portion of the conductive layer.
    Type: Application
    Filed: June 17, 2020
    Publication date: October 8, 2020
    Inventors: Li-Lin Su, Ching-Hua Hsieh, Huang-Ming Chen, Hsueh Wen Tsau
  • Patent number: 10700010
    Abstract: A device includes a conductive layer including a bottom portion, and a sidewall portion over the bottom portion, wherein the sidewall portion is connected to an end of the bottom portion. An aluminum-containing layer overlaps the bottom portion of the conductive layer, wherein a top surface of the aluminum-containing layer is substantially level with a top edge of the sidewall portion of the conductive layer. An aluminum oxide layer is overlying the aluminum-containing layer. A copper-containing region is over the aluminum oxide layer, and is spaced apart from the aluminum-containing layer by the aluminum oxide layer. The copper-containing region is electrically coupled to the aluminum-containing layer through the top edge of the sidewall portion of the conductive layer.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: June 30, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Lin Su, Ching-Hua Hsieh, Huang-Ming Chen, Hsueh Wen Tsau
  • Publication number: 20200124985
    Abstract: Photolithography overlay errors are a source of patterning defects, which contribute to low wafer yield. An interconnect formation process that employs a patterning photolithography/etch process with self-aligned interconnects is disclosed herein. The interconnection formation process, among other things, improves a photolithography overlay (OVL) margin since alignment is accomplished on a wider pattern. In addition, the patterning photolithography/etch process supports multi-metal gap fill and low-k dielectric formation with voids.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 23, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Wei-Chen Chu, Hsiang-Wei Liu, Shau-Lin Shue, Li-Lin Su, Yung-Hsu Wu
  • Patent number: 10534273
    Abstract: Photolithography overlay errors are a source of patterning defects, which contribute to low wafer yield. An interconnect formation process that employs a patterning photolithography/etch process with self-aligned interconnects is disclosed herein. The interconnection formation process, among other things, improves a photolithography overlay (OVL) margin since alignment is accomplished on a wider pattern. In addition, the patterning photolithography/etch process supports multi-metal gap fill and low-k dielectric formation with voids.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: January 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Wei-Chen Chu, Hsiang-Wei Liu, Shau-Lin Shue, Li-Lin Su, Yung-Hsu Wu
  • Publication number: 20200006228
    Abstract: Examples of an integrated circuit with an interconnect structure and a method for forming the integrated circuit are provided herein. In some examples, the method includes receiving a workpiece having an interconnect structure that includes a first conductive feature, a second conductive feature disposed beside the first conductive feature, and an inter-level dielectric disposed between the first conductive feature and the second conductive feature. A conductive material of an etch stop layer is selectively deposited on the first conductive feature and on the second conductive feature without depositing the conductive material on the inter-level dielectric, and the inter-level dielectric is removed to form a gap between the first conductive feature and the second conductive feature.
    Type: Application
    Filed: April 10, 2019
    Publication date: January 2, 2020
    Inventors: Tai-I Yang, Li-Lin Su, Yung-Hsu Wu, Hsin-Ping Chen, Cheng-Chi Chuang
  • Publication number: 20190067089
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a conductive feature in a first dielectric layer. The semiconductor device structure also includes an etching stop layer over the first dielectric layer and a second dielectric layer over the etching stop layer. The semiconductor device structure further includes a conductive via in the etching stop layer and the second dielectric layer. In addition, the semiconductor device structure includes a conductive line over the conductive via. The semiconductor device structure also includes a first barrier liner covering the bottom surface of the conductive line. The semiconductor device structure further includes a second barrier liner surrounding sidewalls of the conductive line and the conductive via. The conductive line and the conductive via are confined in the first barrier liner and the second barrier liner.
    Type: Application
    Filed: August 30, 2017
    Publication date: February 28, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I YANG, Wei-Chen CHU, Li-Lin SU, Shin-Yi YANG, Cheng-Chi CHUANG, Hsin-Ping CHEN
  • Publication number: 20180164698
    Abstract: Photolithography overlay errors are a source of patterning defects, which contribute to low wafer yield. An interconnect formation process that employs a patterning photolithography/etch process with self-aligned interconnects is disclosed herein. The interconnection formation process, among other things, improves a photolithography overlay (OVL) margin since alignment is accomplished on a wider pattern. In addition, the patterning photolithography/etch process supports multi-metal gap fill and low-k dielectric formation with voids.
    Type: Application
    Filed: May 4, 2017
    Publication date: June 14, 2018
    Inventors: Tai-I YANG, Wei-Chen CHU, Hsiang-Wei LIU, Shau-Lin SHUE, Li-Lin SU, Yung-Hsu WU
  • Patent number: 9935006
    Abstract: The present disclosure involves a method of fabricating a semiconductor device in a semiconductor technology node that is 5-nanometer or smaller. An opening is formed that extends through a plurality of layers over a substrate. A barrier layer is formed on surfaces of the opening. A liner layer is formed over the barrier layer in the opening. The barrier layer and the liner layer have different material compositions. The opening is filled with a non-copper metal material. The non-copper material is formed over the liner layer. In some embodiments, the non-copper metal material includes cobalt.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: April 3, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsien-Chang Wu, Li-Lin Su
  • Publication number: 20170287842
    Abstract: In a method for manufacturing a semiconductor device, a dielectric layer is formed over a substrate. A first pattern and a second pattern are formed in the first interlayer dielectric layer. The first pattern has a width greater than a width of the second pattern. A first metal layer is formed in the first pattern and the second pattern. A second metal layer is formed in the first pattern. A planarization operation is performed on the first and second metal layers so that a first metal wiring by the first pattern and a second metal wiring by the second pattern are formed. A metal material of the first metal layer is different from a metal material of the second metal layer. The first metal wiring includes the first and second metal layers and the second metal wiring includes the first metal layer but does not include the second metal layer.
    Type: Application
    Filed: June 23, 2017
    Publication date: October 5, 2017
    Inventors: Shih-Kang FU, Hsien-Chang WU, Li-Lin SU, Ming-Han LEE, Shau-Lin SHUE