Patents by Inventor Liang-Kai Han

Liang-Kai Han has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9269758
    Abstract: The present disclosure involves a method. The method includes providing a substrate including a top surface. The method also includes forming a gate over the top surface of the substrate. The formed gate has a first height measured from the top surface of the substrate. The method also includes etching the gate to reduce the gate to a second height. This second height is substantially less than the first height. The present disclosure also involves a semiconductor device. The semiconductor device includes a substrate. The substrate includes a top surface. The semiconductor device also includes a first gate formed over the top surface of the substrate. The first gate has a first height. The semiconductor device also includes a second gate formed over the top surface of the substrate. The second gate has a second height. The first height is substantially less than the second height.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: February 23, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Hwang Yang, Chun-Heng Liao, Hsin-Li Cheng, Liang-Kai Han
  • Patent number: 8633086
    Abstract: A method for forming a support structure for supporting and handling a semiconductor wafer containing vertical FETs formed at the front surface thereof is provided. In one embodiment, a semiconductor wafer is provided having a front surface and a rear surface, wherein the front surface comprises one or more dies separated by dicing lines. The wafer is thinned to a predetermined thickness. A plurality of patterned metal features are formed on a thinned rear surface to provide support for the wafer, wherein each of the plurality of patterned metal features covers substantially one die, leaving the dicing lines substantially uncovered. The wafer is thereafter diced along the dicing lines to separate the one or more dies for later chip packaging.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: January 21, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Alex Kalnitsky, Hsiao-Chin Tuan, Liang-Kai Han, Uway Tseng, Yuan-Chih Hsieh, Hung-Hua Lin
  • Publication number: 20120181612
    Abstract: The present disclosure involves a method. The method includes providing a substrate including a top surface. The method also includes forming a gate over the top surface of the substrate. The formed gate has a first height measured from the top surface of the substrate. The method also includes etching the gate to reduce the gate to a second height. This second height is substantially less than the first height. The present disclosure also involves a semiconductor device. The semiconductor device includes a substrate. The substrate includes a top surface. The semiconductor device also includes a first gate formed over the top surface of the substrate. The first gate has a first height. The semiconductor device also includes a second gate formed over the top surface of the substrate. The second gate has a second height. The first height is substantially less than the second height.
    Type: Application
    Filed: January 13, 2011
    Publication date: July 19, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jing-Hwang Yang, Chun-Heng Liao, Hsin-Li Cheng, Liang-Kai Han
  • Publication number: 20110156217
    Abstract: A method for forming a support structure for supporting and handling a semiconductor wafer containing vertical FETs formed at the front surface thereof is provided. In one embodiment, a semiconductor wafer is provided having a front surface and a rear surface, wherein the front surface comprises one or more dies separated by dicing lines. The wafer is thinned to a predetermined thickness. A plurality of patterned metal features are formed on a thinned rear surface to provide support for the wafer, wherein each of the plurality of patterned metal features covers substantially one die, leaving the dicing lines substantially uncovered. The wafer is thereafter diced along the dicing lines to separate the one or more dies for later chip packaging.
    Type: Application
    Filed: December 31, 2009
    Publication date: June 30, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Alex Kalnitsky, Hsiao-Chin Tuan, Liang-Kai Han, Uway Tseng, Yuan-Chih Hsieh, Hung-Hua Lin
  • Patent number: 7534671
    Abstract: A method for integrally forming a metal-oxide-semiconductor (MOS) device and an electrical fuse device on a semiconductor substrate includes the following steps. An isolation structure is formed on the semiconductor substrate. A dielectric layer is deposited over the isolation structure and the semiconductor substrate. A metal layer is deposited on the dielectric layer. A polysilicon layer is deposited on the metal layer. The dielectric layer, the metal layer and the polysilicon layer are patterned into a first stack of the dielectric layer, the metal layer and the polysilicon layer on the isolation structure for functioning as the electrical fuse device, and a second stack of the dielectric layer, the metal layer and the polysilicon layer on the semiconductor substrate for functioning as a gate of the MOS device.
    Type: Grant
    Filed: March 29, 2008
    Date of Patent: May 19, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chiang-Ming Chuang, Liang-Kai Han
  • Publication number: 20080182373
    Abstract: A method for integrally forming a metal-oxide-semiconductor (MOS) device and an electrical fuse device on a semiconductor substrate includes the following steps. An isolation structure is formed on the semiconductor substrate. A dielectric layer is deposited over the isolation structure and the semiconductor substrate. A metal layer is deposited on the dielectric layer. A polysilicon layer is deposited on the metal layer. The dielectric layer, the metal layer and the polysilicon layer are patterned into a first stack of the dielectric layer, the metal layer and the polysilicon layer on the isolation structure for functioning as the electrical fuse device, and a second stack of the dielectric layer, the metal layer and the polysilicon layer on the semiconductor substrate for functioning as a gate of the MOS device.
    Type: Application
    Filed: March 29, 2008
    Publication date: July 31, 2008
    Inventors: Chiang-Ming Chuang, Liang-Kai Han
  • Patent number: 7361968
    Abstract: A method for integrally forming a metal-oxide-semiconductor (MOS) device and an electrical fuse device on a semiconductor substrate includes the following steps. An isolation structure is formed on the semiconductor substrate. A dielectric layer is deposited over the isolation structure and the semiconductor substrate. A metal layer is deposited on the dielectric layer. A polysilicon layer is deposited on the metal layer. The dielectric layer, the metal layer and the polysilicon layer are patterned into a first stack of the dielectric layer, the metal layer and the polysilicon layer on the isolation structure for functioning as the electrical fuse device, and a second stack of the dielectric layer, the metal layer and the polysilicon layer on the semiconductor substrate for functioning as a gate of the MOS device.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: April 22, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chiang-Ming Chuang, Liang-Kai Han
  • Patent number: 7321139
    Abstract: A layout for a transistor in a standard cell is disclosed. The layout for a transistor includes an active region with at least one portion having a first edge and at least one portion having a second edge all perpendicular to a channel of the transistor; and a gate placed on top of the active region with a distance from an edge of the gate to the first edge being shorter than a distance from the edge of the gate to the second edge of the active region, wherein the active region is of a non-rectangular shape.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: January 22, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Mi-Chang Chang, Liang-Kai Han, Huan-Tsung Huang, Wen-Jya Liang, Li-Chun Tien
  • Publication number: 20070284618
    Abstract: A layout for a transistor in a standard cell is disclosed. The layout for a transistor comprises an active region with at least one portion having a first edge and at least one portion having a second edge all perpendicular to a channel of the transistor; and a gate placed on top of the active region with a distance from an edge of the gate to the first edge being shorter than a distance from the edge of the gate to the second edge of the active region, wherein the active region is of a non-rectangular shape.
    Type: Application
    Filed: May 26, 2006
    Publication date: December 13, 2007
    Inventors: Mi-Chang Chang, Liang-Kai Han, Huan-Tsung Huang, Wen-Jya Liang, Li-Chun Tien
  • Patent number: 7297587
    Abstract: An integrated circuit having composite gate structures and a method of forming the same are provided. The integrated circuit includes a first MOS device, a second MOS device and a third MOS device. The gate stack of the first MOS device includes a high-k gate dielectric and a first metal gate on the high-k gate dielectric. The gate stack of the second MOS device includes a second metal gate on a high-k gate dielectric. The first metal gate and the second metal gate have different work functions. The gate stack of the third MOS device includes a silicon gate over a gate dielectric. The silicon gate is preferably formed over the gate stacks of the first MOS device and the second MOS device.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: November 20, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: I-Lu Wu, Kuang-Hsin Chen, Liang-Kai Han
  • Publication number: 20070221966
    Abstract: A method for integrally forming a metal-oxide-semiconductor (MOS) device and an electrical fuse device on a semiconductor substrate includes the following steps. An isolation structure is formed on the semiconductor substrate. A dielectric layer is deposited over the isolation structure and the semiconductor substrate. A metal layer is deposited on the dielectric layer. A polysilicon layer is deposited on the metal layer. The dielectric layer, the metal layer and the polysilicon layer are patterned into a first stack of the dielectric layer, the metal layer and the polysilicon layer on the isolation structure for functioning as the electrical fuse device, and a second stack of the dielectric layer, the metal layer and the polysilicon layer on the semiconductor substrate for functioning as a gate of the MOS device.
    Type: Application
    Filed: March 23, 2006
    Publication date: September 27, 2007
    Inventors: Chiang-Ming Chuang, Liang-Kai Han
  • Publication number: 20070114604
    Abstract: A MOS transistor structure is disclosed. A gate electrode is disposed on a semiconductor substrate. A first extension of a predetermined impurity type is substantially aligned with the gate electrode in the substrate. A second extension of the predetermined impurity type overlaps with the first extension in the substrate. The first extension has at least one lateral boundary line closer to the gate electrode than that of the second extension. Source and drain regions of the predetermined polarity type overlaps with the first and second extensions in the substrate. The second extension has at least one lateral boundary line closer to the gate electrode than that of the source and drain regions. The source and drain regions are deeper than the second extension, which is deeper than the first extension, so that they collectively reduce lateral abruptness of the source and drain, while maintaining a reduced extension resistance.
    Type: Application
    Filed: November 22, 2005
    Publication date: May 24, 2007
    Inventors: Huan-Tsung Huang, Liang-Kai Han
  • Publication number: 20070111425
    Abstract: An integrated circuit having composite gate structures and a method of forming the same are provided. The integrated circuit includes a first MOS device, a second MOS device and a third MOS device. The gate stack of the first MOS device includes a high-k gate dielectric and a first metal gate on the high-k gate dielectric. The gate stack of the second MOS device includes a second metal gate on a high-k gate dielectric. The first metal gate and the second metal gate have different work functions. The gate stack of the third MOS device includes a silicon gate over a gate dielectric. The silicon gate is preferably formed over the gate stacks of the first MOS device and the second MOS device.
    Type: Application
    Filed: January 3, 2007
    Publication date: May 17, 2007
    Inventors: I-Lu Wu, Kuang-Hsin Chen, Liang-Kai Han
  • Patent number: 7183596
    Abstract: An integrated circuit having composite gate structures and a method of forming the same are provided. The integrated circuit includes a first MOS device, a second MOS device and a third MOS device. The gate stack of the first MOS device includes a high-k gate dielectric and a first metal gate on the high-k gate dielectric. The gate stack of the second MOS device includes a second metal gate on a high-k gate dielectric. The first metal gate and the second metal gate have different work functions. The gate stack of the third MOS device includes a silicon gate over a gate dielectric. The silicon gate is preferably formed over the gate stacks of the first MOS device and the second MOS device.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: February 27, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: I-Lu Wu, Kuang-Hsin Chen, Liang-Kai Han
  • Publication number: 20060289920
    Abstract: An integrated circuit having composite gate structures and a method of forming the same are provided. The integrated circuit includes a first MOS device, a second MOS device and a third MOS device. The gate stack of the first MOS device includes a high-k gate dielectric and a first metal gate on the high-k gate dielectric. The gate stack of the second MOS device includes a second metal gate on a high-k gate dielectric. The first metal gate and the second metal gate have different work functions. The gate stack of the third MOS device includes a silicon gate over a gate dielectric. The silicon gate is preferably formed over the gate stacks of the first MOS device and the second MOS device.
    Type: Application
    Filed: June 22, 2005
    Publication date: December 28, 2006
    Inventors: I-Lu Wu, Kuang-Hsin Chen, Liang-Kai Han
  • Publication number: 20050106836
    Abstract: A protective structure for blocking the propagation of defects generated in a semiconductor device is disclosed. In an exemplary embodiment, the structure includes a deep trench isolation formed between a memory storage region of the semiconductor device and a logic circuit region of the semiconductor device, the deep trench isolation being filled with an insulative material. The deep trench isolation thereby prevents the propagation of crystal defects generated in the logic circuit region from propagating into the memory storage region.
    Type: Application
    Filed: January 10, 2005
    Publication date: May 19, 2005
    Inventors: Tze-Chiang Chen, Liang-Kai Han
  • Patent number: 6885080
    Abstract: A protective structure for blocking the propagation of defects generated in a semiconductor device is disclosed. In an exemplary embodiment, the structure includes a deep trench isolation formed between a memory storage region of the semiconductor device and a logic circuit region of the semiconductor device, the deep trench isolation being filled with an insulative material. The deep trench isolation thereby prevents the propagation of crystal defects generated in the logic circuit region from propagating into the memory storage region.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: April 26, 2005
    Assignee: International Business Machines Corporation
    Inventors: Tze-Chiang Chen, Liang-Kai Han
  • Publication number: 20030162400
    Abstract: A protective structure for blocking the propagation of defects generated in a semiconductor device is disclosed. In an exemplary embodiment, the structure includes a deep trench isolation formed between a memory storage region of the semiconductor device and a logic circuit region of the semiconductor device, the deep trench isolation being filled with an insulative material. The deep trench isolation thereby prevents the propagation of crystal defects generated in the logic circuit region from propagating into the memory storage region.
    Type: Application
    Filed: February 22, 2002
    Publication date: August 28, 2003
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tze-Chiang Chen, Liang-Kai Han
  • Publication number: 20030094660
    Abstract: A semiconductor structure having silicon dioxide layers of different thicknesses is fabricated by forming a sacrificial silicon dioxide layer on the surface of a substrate; implanting nitrogen ions through the sacrificial silicon dioxide layer into first areas of the semiconductor substrate; implanting chlorine and/or bromine ions through the sacrificial silicon dioxide layer into second areas of the semiconductor substrate where silicon dioxide having the highest thickness is to be formed; removing the sacrificial silicon dioxide layer; and then growing a layer of silicon dioxide on the surface of the semiconductor substrate. The growth rate of the silicon dioxide will be faster in the areas containing the chlorine and/or bromine ions and therefore the silicon dioxide layer will be thicker in those regions as compared to the silicon dioxide layer in the regions not containing the chlorine and/or bromine ions.
    Type: Application
    Filed: October 3, 2001
    Publication date: May 22, 2003
    Inventors: Scott W. Crowder, Anthony Gene Domenicucci, Liang-Kai Han, Michael John Hargrove, Paul Andrew Ronsheim
  • Patent number: 6410402
    Abstract: Disclosed is a method of providing variant fills in a semiconductor substrate having a plurality of trenches by providing a semiconductor substrate with a first set of trenches and a second set of trenches, filling all the trenches with a first fill material, masking the second set of trenches in a manner effective in resisting an etching of said first fill material, etching the first fill material in the first set of trenches to a depth effective in permitting the first set of trenches to be plugged, plugging the first set of trenches with a material resistant to an etching of the first fill material, etching the first fill material from the second set of trenches; and then filling the second set of trenches with a second fill material. The process may be generalized to more than two fill materials.
    Type: Grant
    Filed: October 5, 2000
    Date of Patent: June 25, 2002
    Assignee: International Business Machines Corporation
    Inventors: Jay Harrington, Liang-Kai Han