Patents by Inventor Liang Yan

Liang Yan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8199537
    Abstract: A switching power converter detects low load conditions based on the ratio of a first peak current value for peak current switching in constant voltage regulation mode to a second peak current value for peak current switching in constant current regulation mode. The power supply load is considered to have a low load if the ratio is lower than a predetermined threshold. Once a low load condition is detected, the switching frequency of the switching power converter is reduced to a level that minimizes switching loss in the power converter. In addition, the switching power converter also adjusts the switching frequency according to the sensed input line voltage. An offset is added to the switching period to reduce the switching frequency of the switching power converter, as the input line voltage is increased.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: June 12, 2012
    Assignee: iWatt Inc.
    Inventors: Liang Yan, Xiaoyan Wang, Jun Zheng, Junjie Zheng, Clarita Poon
  • Patent number: 8130189
    Abstract: The invention relates to a gate driving device for Thin Film Transistor liquid crystal display comprising: a plurality of shift registers directly deposited on an array substrate, said shift registers being composed of effect transistors and a capacitor, obtaining a gate driving signal voltage by controlling an input signal. Said shift register can be realized by 5-layer mask process or 4-layer mask process, by arranging the field effect transistors on the margin part outside the active region on the substrate or at the edge of the substrate, and then directly depositing them on an array substrate. The invention obtains a gate driving signal voltage by the shift registers directly deposited on the substrate, thus overcoming the shortage of the need of driving chips and film layers in the prior art, substantially reducing the production cost for LCD.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: March 6, 2012
    Assignee: Beijing Boe Optoelectronics Technology Co., Ltd.
    Inventors: Yubo Xu, Bongyeol Ryu, Ke Liang, Liang Yan
  • Publication number: 20120023320
    Abstract: A computer having a BIOS recovery function includes a baseboard management controller (BMC) circuit, a main control circuit, a switching module and a BIOS chip. The switching module is connected to the BMC circuit and the main control circuit. The BIOS chip stores BIOS programs for the computer and is selectively connected to the BMC circuit and main control circuit by the switching module. When the BIOS programs are corrupted, the switching module selects the BMC circuit to communicate with the BIOS chip. New BIOS programs can be sent to the BIOS chip to update the corrupted BIOS programs.
    Type: Application
    Filed: December 31, 2010
    Publication date: January 26, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HUNG-JU CHEN, LIANG-YAN DAI
  • Publication number: 20110286248
    Abstract: In a switching power converter, PWM mode and PFM mode are separated into two independent control sections with the control voltage range in each control section determined independently. Each of the PWM and PFM modulation modes cannot operate continuously beyond its boundaries, thereby forming a control gap between the two control sections within which no continuous operation is allowed. In order to supply a load condition within the control gap, the power supply operates at the two boundaries of the control gap. Transition between PWM and PFM modes occurs fast, with low output voltage ripple. No limitation needs to be imposed on the control voltage range in each of the PWM and PFM control sections, because the control parameters in the PWM and PFM control sections need not be matched to one another, due to separation of the PWM and PFM modes by the control gap.
    Type: Application
    Filed: August 4, 2011
    Publication date: November 24, 2011
    Applicant: IWATT INC.
    Inventors: Xiaoyan Wang, Liang Yan, Junjie Zheng, John William Kesterson, Clarita Poon
  • Patent number: 8049481
    Abstract: Adaptive multi-mode digital control schemes that improve the light-load efficiency (and thus the overall average efficiency) in switch-mode power converters without causing performance issues such as audible noises or excessive voltage ripples. Embodiments include a switch-mode power converter that reduces current in the power converter using a second pulse-width-modulation (PWM) mode before reaching switching frequencies that generate audible noises. As the load across the output of the power converter is reduced, the power converter transitions from a first PWM mode in high load conditions to a first pulse-frequency-modulation (PFM) mode, then to a second PWM mode, and finally to a second PFM mode. During the second PFM mode, the switching frequency is dropped to audible frequency levels. Current in the power converter, however, is reduced in the second PWM mode before transitioning to the second PFM mode.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: November 1, 2011
    Assignee: iWatt Inc.
    Inventors: Yong Li, Carrie Seim, Junjie Zheng, John W. Kesterson, Liang Yan, Clarita Poon, Fuqiang Shi
  • Patent number: 8018743
    Abstract: In a switching power converter, PWM mode and PFM mode are separated into two independent control sections with the control voltage range in each control section determined independently. Each of the PWM and PFM modulation modes cannot operate continuously beyond its boundaries, thereby forming a control gap between the two control sections within which no continuous operation is allowed. In order to supply a load condition within the control gap, the power supply operates at the two boundaries of the control gap. Transition between PWM and PFM modes occurs fast, with low output voltage ripple. No limitation needs to be imposed on the control voltage range in each of the PWM and PFM control sections, because the control parameters in the PWM and PFM control sections need not be matched to one another, due to separation of the PWM and PFM modes by the control gap.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: September 13, 2011
    Assignee: iWatt Inc.
    Inventors: Xiaoyan Wang, Liang Yan, Junjie Zheng, John William Kesterson, Clarita Poon
  • Patent number: 7974107
    Abstract: A hybrid constant current control system that uses both pulse width modulation (PWM) and pulse frequency modulation (PFM) control. When transitioning from constant voltage mode to constant current mode the present invention can continue to control using PWM. Thereafter, when the voltage has dropped, the present invention smoothly transitions to PFM mode. The point of transition is based upon the switching frequency and the lowest rated voltage of operation. The system and method avoids very short (narrow) Ton times which ensures accurate constant current (CC) control with bipolar junction transistor (BJT) devices. The present invention also avoids acoustic noise because the switching frequency is maintained at a high enough level to avoid such acoustic noise even when the energy transferred through the transformer is still substantial and the output voltage is not too low.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: July 5, 2011
    Assignee: iWatt Inc.
    Inventors: Yong Li, Junjie Zheng, Liang Yan, John Kesterson, Xiao Yan Wang
  • Patent number: 7961801
    Abstract: A transmitter identification information (TII) signal detection circuit is suitable for an orthogonal frequency division modulation system. A TII signal detection circuit receives a TII signal and conducts a cross-correlation calculation on the TII signal and a phase reference symbol (PRS) so as to obtain a present cross-correlation result, and then, sums the cross-correlation results obtained by conducting cross-correlations on AVE_TF_NUM-1 pieces of TII signals and the PRS and the present cross-correlation result so as to obtain an accumulated cross-correlation result. After that, a plurality of indices corresponding to a plurality of maximal values in the accumulated cross-correlation result is found out according to the accumulated cross-correlation result.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: June 14, 2011
    Assignee: VIA Technologies, Inc.
    Inventors: Liang Yan, Guangling Zhao
  • Publication number: 20100225293
    Abstract: In a switching power converter, PWM mode and PFM mode are separated into two independent control sections with the control voltage range in each control section determined independently. Each of the PWM and PFM modulation modes cannot operate continuously beyond its boundaries, thereby forming a control gap between the two control sections within which no continuous operation is allowed. In order to supply a load condition within the control gap, the power supply operates at the two boundaries of the control gap. Transition between PWM and PFM modes occurs fast, with low output voltage ripple. No limitation needs to be imposed on the control voltage range in each of the PWM and PFM control sections, because the control parameters in the PWM and PFM control sections need not be matched to one another, due to separation of the PWM and PFM modes by the control gap.
    Type: Application
    Filed: March 5, 2009
    Publication date: September 9, 2010
    Applicant: IWATT INC.
    Inventors: Xiaoyan Wang, Liang Yan, Junjie Zheng, John William Kesterson, Clarita Poon
  • Publication number: 20100208500
    Abstract: A switching power converter detects low load conditions based on the ratio of a first peak current value for peak current switching in constant voltage regulation mode to a second peak current value for peak current switching in constant current regulation mode. The power supply load is considered to have a low load if the ratio is lower than a predetermined threshold. Once a low load condition is detected, the switching frequency of the switching power converter is reduced to a level that minimizes switching loss in the power converter. In addition, the switching power converter also adjusts the switching frequency according to the sensed input line voltage. An offset is added to the switching period to reduce the switching frequency of the switching power converter, as the input line voltage is increased.
    Type: Application
    Filed: February 19, 2009
    Publication date: August 19, 2010
    Applicant: IWATT INC.
    Inventors: Liang Yan, Xiaoyan Wang, Jun Zheng, Junjie Zheng, Clarita Poon
  • Publication number: 20100164455
    Abstract: Adaptive multi-mode digital control schemes that improve the light-load efficiency (and thus the overall average efficiency) in switch-mode power converters without causing performance issues such as audible noises or excessive voltage ripples. Embodiments include a switch-mode power converter that reduces current in the power converter using a second pulse-width-modulation (PWM) mode before reaching switching frequencies that generate audible noises. As the load across the output of the power converter is reduced, the power converter transitions from a first PWM mode in high load conditions to a first pulse-frequency-modulation (PFM) mode, then to a second PWM mode, and finally to a second PFM mode. During the second PFM mode, the switching frequency is dropped to audible frequency levels. Current in the power converter, however, is reduced in the second PWM mode before transitioning to the second PFM mode.
    Type: Application
    Filed: October 29, 2009
    Publication date: July 1, 2010
    Applicant: IWATT INC.
    Inventors: Yong Li, Carrie Seim, Junjie Zheng, John W. Kesterson, Liang Yan, Clarita Poon, Fuqiang Shi
  • Patent number: 7701367
    Abstract: A computer-implemented method to decode a digital signal includes following steps. A micro control unit (MCU) receives a digital signal. The MCU reads a low voltage period of the digital signal and stores a time duration of the low voltage period into a first register as a value TL. The MCU reads next high voltage period of the digital signal and stores a time duration of the high voltage period into a second register as a value TH. The MCU reads the value TL of the first register and the value TH of the second register, and computes a ratio TR=TH/TL. The MCU compares the ratio TR with two predetermined values M and N, if TR=M, the decoded result is a logical “1.” If TR=N, the decoded result is a logical “0.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: April 20, 2010
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Sheng-Jie Sang, Liang-Yan Dai
  • Patent number: 7689183
    Abstract: A transmitter controlling output power to generate a ramp and a method thereof. The transmitter comprises a baseband module, a transmitter module, and a power amplifier. The baseband module receives a power control level, determines a scaling factor according to the power control level, determines a difference between an upper power limit and lower power limit according to a position on the ramp, and calculates a control signal according to the scaling factor, the lower power limit, and the difference. The transmitter module transmits data. The power amplifier coupled to the baseband module and the transmitter module, outputs the data with the output power according the control signal.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: March 30, 2010
    Assignee: Via Technologies, Inc.
    Inventor: Liang Yan
  • Publication number: 20100026534
    Abstract: A computer-implemented method to decode a digital signal includes following steps. A micro control unit (MCU) receives a digital signal. The MCU reads a low voltage period of the digital signal and stores a time duration of the low voltage period into a first register as a value TL. The MCU reads next high voltage period of the digital signal and stores a time duration of the high voltage period into a second register as a value TH. The MCU reads the value TL of the first register and the value TH of the second register, and computes a ratio TR=TH/TL. The MCU compares the ratio TR with two predetermined values M and N, if TR=M, the decoded result is a logical “1.” If TR=N, the decoded result is a logical “0.
    Type: Application
    Filed: October 10, 2008
    Publication date: February 4, 2010
    Applicants: HONG FU JIN PRECISION INDUSTRY (ShenZhen) Co., LTD, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: SHENG-JIE SANG, LIANG-YAN DAI
  • Publication number: 20090207949
    Abstract: A transmitter identification information (TII) signal detection circuit is suitable for an orthogonal frequency division modulation system. A TII signal detection circuit receives a TII signal and conducts a cross-correlation calculation on the TII signal and a phase reference symbol (PRS) so as to obtain a present cross-correlation result, and then, sums the cross-correlation results obtained by conducting cross-correlations on AVE_TF_NUM-1 pieces of TII signals and the PRS and the present cross-correlation result so as to obtain an accumulated cross-correlation result. After that, a plurality of indices corresponding to a plurality of maximal values in the accumulated cross-correlation result is found out according to the accumulated cross-correlation result.
    Type: Application
    Filed: April 8, 2008
    Publication date: August 20, 2009
    Applicant: VIA TECHNOLOGIES, INC.
    Inventors: Liang Yan, Guangling Zhao
  • Patent number: 7561205
    Abstract: An apparatus for adjusting a pixel clock frequency based on a phase locked loop (PLL) includes: a pixel clock generator (11) for generating an actual pixel clock having an actual frequency; a division frequency counter (12) for dividing the actual pixel clock into several pixel clocks having different frequency ranges by means of multiplying the actual frequency of the actual pixel clock by a multiplier; a reference frequency counter (13) for dividing the actual pixel clock by means of lowering the actual frequency of the actual pixel clock, and generating a reference frequency; a reactive frequency counter (14) for dividing the actual pixel clock by means of heightening the actual frequency of the actual pixel clock, and generating a reactive frequency; a PLL circuit (16) for integrating the reference frequency and the reactive frequency to generate a required pixel clock having a required frequency. A related method is also disclosed.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: July 14, 2009
    Assignees: Hong Fu Jin Precision Industry (Shen Zhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Jian-Feng Wang, Jian-Jun Zhu, Liang-Yan Dai
  • Patent number: 7543222
    Abstract: A system for checking basic input output system read only memory (BIOS ROM) data includes a keyboard, a display, a computer host, and a checking device. The computer host has a BIOS ROM installed therein. The checking device includes: a data dividing module for dividing the BIOS ROM data into a plurality of sections; a data obtaining module for capturing BIOS ROM data from one or more sections, and for counting a check datum; a data checking module for comparing the check datum with a standard datum, and for determining whether the two data are equal; and a checking result outputting module for outputting the checking results.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: June 2, 2009
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Liang-Yan Dai, Jian-Jun Zhu
  • Publication number: 20090059632
    Abstract: A hybrid constant current control system that uses both pulse width modulation (PWM) and pulse frequency modulation (PFM) control. When transitioning from constant voltage mode to constant current mode the present invention can continue to control using PWM. Thereafter, when the voltage has dropped, the present invention smoothly transitions to PFM mode. The point of transition is based upon the switching frequency and the lowest rated voltage of operation. The system and method avoids very short (narrow) Ton times which ensures accurate constant current (CC) control with bipolar junction transistor (BJT) devices. The present invention also avoids acoustic noise because the switching frequency is maintained at a high enough level to avoid such acoustic noise even when the energy transferred through the transformer is still substantial and the output voltage is not too low.
    Type: Application
    Filed: August 27, 2008
    Publication date: March 5, 2009
    Inventors: Yong Li, Junjie Zheng, Liang Yan, John Kesterson, Xiao Yan Wang
  • Publication number: 20090058781
    Abstract: The invention relates to a gate driving device for Thin Film Transistor liquid crystal display comprising: a plurality of shift registers directly deposited on an array substrate, said shift registers being composed of effect transistors and a capacitor, obtaining a gate driving signal voltage by controlling an input signal. Said shift register can be realized by 5-layer mask process or 4-layer mask process, by arranging the field effect transistors on the margin part outside the active region on the substrate or at the edge of the substrate, and then directly depositing them on an array substrate. The invention obtains a gate driving signal voltage by the shift registers directly deposited on the substrate, thus overcoming the shortage of the need of driving chips and film layers in the prior art, substantially reducing the production cost for LCD.
    Type: Application
    Filed: May 22, 2008
    Publication date: March 5, 2009
    Inventors: Yubo XU, Bongyeol RYU, Ke LIANG, Liang YAN
  • Patent number: 7443700
    Abstract: A primary side sensing power control system and method for constant current control that utilizes a relationship that involves the measured reset-time from the previous cycle to determine the primary side peak current and off-time for the next cycle. This control mechanism does not need the knowledge of input voltage or magnetizing inductance. Therefore, it removes the sensitivities of input voltage and magnetizing inductance to the output current limit. Furthermore, it uses a time measurement instead of a voltage measurement for the current calculation which in many cases is easier to perform.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: October 28, 2008
    Assignee: iWatt Inc.
    Inventors: Liang Yan, Junjie Zheng, John Kesterson, Xiaoyan Wang, Hien Bui