Patents by Inventor Liang Yin

Liang Yin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230011863
    Abstract: Various embodiments include a parallel processing computer system that detects memory errors as a memory client loads data from memory and disables the memory client from storing data to memory, thereby reducing the likelihood that the memory error propagates to other memory clients. The memory client initiates a stall sequence, while other memory clients continue to execute instructions and the memory continues to service memory load and store operations. When a memory error is detected, a specific bit pattern is stored in conjunction with the data associated with the memory error. When the data is copied from one memory to another memory, the specific bit pattern is also copied, in order to identify the data as having a memory error.
    Type: Application
    Filed: July 12, 2021
    Publication date: January 12, 2023
    Inventors: NAVEEN CHERUKURI, SAURABH HUKERIKAR, PAUL RACUNAS, NIRMAL RAJ SAXENA, DAVID CHARLES PATRICK, YIYANG FENG, ABHIJEET GHADGE, STEVEN JAMES HEINRICH, ADAM HENDRICKSON, GENTARO HIROTA, PRAVEEN JOGINIPALLY, VAISHALI KULKARNI, PETER C. MILLS, SANDEEP NAVADA, MANAN PATEL, LIANG YIN
  • Publication number: 20220415606
    Abstract: In an embodiment, a method includes: placing a wafer on an implanter platen, the wafer including integrated circuit dies; measuring a position of the wafer by measuring a positions of an outer edge of the integrated circuit dies with a camera; determining an angular displacement between the position of the wafer and a reference position of the wafer; and rotating the implanter platen by the angular displacement.
    Type: Application
    Filed: August 27, 2021
    Publication date: December 29, 2022
    Inventors: Chia-Cheng Chen, Chun-Liang Chen, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20220415719
    Abstract: In an embodiment, a method includes: placing a wafer on an implanter platen, the wafer including alignment marks; measuring a position of the wafer by measuring positions of the alignment marks with one or more cameras; determining an angular displacement between the position of the wafer and a reference position of the wafer; and rotating the implanter platen by the angular displacement.
    Type: Application
    Filed: August 27, 2021
    Publication date: December 29, 2022
    Inventors: Chia-Cheng Chen, Chih-Kai Yang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20220412389
    Abstract: The present invention belongs to the technical field of electric push rods, and specifically discloses a sliding limit type nut structure, a telescopic rod and an electric push rod. The sliding limit type nut structure includes a sliding contact assembly, where an inner wall of the sliding contact assembly is provided with internal threads, both ends of the sliding contact assembly are provided with external threads and a sliding sleeve, respectively, and an outer wall of the sliding sleeve is provided with chutes. According to the present invention, the internal threads of the sliding contact assembly and the chutes on the sliding sleeve are used to convert a helical motion into stable linear sliding, which makes the motion process more stable.
    Type: Application
    Filed: August 25, 2022
    Publication date: December 29, 2022
    Applicant: TOMUU ACTUATOR TECHNOLOGY CO. LTD
    Inventor: Liang YIN
  • Publication number: 20220406774
    Abstract: A semiconductor structure having doped wells and a method of forming is provided. The doped wells may utilize parallel implantation techniques and tilt implantation techniques to form wells having less lateral diffusion and less vertical doping.
    Type: Application
    Filed: March 21, 2022
    Publication date: December 22, 2022
    Inventors: Yu-Chang Lin, Bau-Ming Wang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20220406655
    Abstract: Semiconductor devices and methods of manufacturing semiconductor devices are described herein. A method includes implanting neutral elements into a dielectric layer, an etch stop layer, and a metal feature, the dielectric layer being disposed over the etch stop layer and the metal feature being disposed through the dielectric layer and the etch stop layer. The method further includes using a germanium gas as a source for the neutral elements and using a beam current above 6.75 mA to implant the neutral elements.
    Type: Application
    Filed: February 18, 2022
    Publication date: December 22, 2022
    Inventors: Kuo-Ju Chen, Shih-Hsiang Chiu, Meng-Han Chou, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20220403938
    Abstract: The present invention relates to the field of push rods, in particular to a waterproof and dustproof electric push rod, where a waterproof and dustproof module includes a single-lip oil seal, a first anti-swing ring, a piston oil seal and a second anti-swing ring, which are arranged in sequence in a retraction direction of an inner tube. When the inner tube retracts, since inner rings of the single-lip oil seal, the first anti-swing ring, the piston oil seal and the second anti-swing ring are tightly attached to an outer sidewall of the inner tube, the single-lip oil seal plays a role in scraping off dirt (dust, silts, etc.) on the surface of the inner tube, and the internal piston oil seal can be waterproof and dustproof.
    Type: Application
    Filed: August 25, 2022
    Publication date: December 22, 2022
    Applicant: TOMUU ACTUATOR TECHNOLOGY CO. LTD
    Inventor: Liang YIN
  • Publication number: 20220406629
    Abstract: In an embodiment, a pattern transfer processing chamber includes a pattern transfer processing chamber and a loading area external to the pattern transfer processing chamber. The loading area is configured to transfer a wafer to or from the pattern transfer processing chamber. The loading area comprises a first region including a loadport, a second region including a load-lock between the first region and the pattern transfer processing chamber, and an embedded baking chamber configured to heat a patterned photoresist on the wafer.
    Type: Application
    Filed: April 14, 2022
    Publication date: December 22, 2022
    Inventors: Chia-Cheng Chen, Chih-Kai Yang, Chun-Liang Chen, Wei-Ting Chien, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20220406592
    Abstract: A method of forming a semiconductor device includes forming a photoresist over a target layer, where the target layer includes a substrate. The photoresist is patterned to form a patterned photoresist. Scum remains between portions of the patterned photoresist. The substrate is tilted relative to a direction of propagation of an ion beam. An ion treatment is performed on the scum. A pattern of the patterned photoresist is transferred to the target layer.
    Type: Application
    Filed: February 21, 2022
    Publication date: December 22, 2022
    Inventors: Chun-Hung Wu, Chia-Cheng Chen, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11532485
    Abstract: In a gate last metal gate process for forming a transistor, a dielectric layer is formed over an intermediate transistor structure, the intermediate structure including a dummy gate electrode, typically formed of polysilicon. Various processes, such as patterning the polysilicon, planarizing top layers of the structure, and the like can remove top portions of the dielectric layer, which can result in decreased control of gate height when a metal gate is formed in place of the dummy gate electrode, decreased control of fin height for finFETs, and the like. Increasing the resistance of the dielectric layer to attack from these processes, such as by implanting silicon or the like into the dielectric layer before such other processes are performed, results in less removal of the top surface, and hence improved control of the resulting structure dimensions and performance.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Su-Hao Liu, Tsan-Chun Wang, Liang-Yin Chen, Jing-Huei Huang, Lun-Kuang Tan, Huicheng Chang
  • Patent number: 11532516
    Abstract: A method includes forming a gate stack over a first semiconductor region, removing a second portion of the first semiconductor region on a side of the gate stack to form a recess, growing a second semiconductor region starting from the recess, implanting the second semiconductor region with an impurity, and performing a melting laser anneal on the second semiconductor region. A first portion of the second semiconductor region is molten during the melting laser anneal, and a second and a third portion of the second semiconductor region on opposite sides of the first portion are un-molten.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Su-Hao Liu, Wen-Yen Chen, Tz-Shian Chen, Cheng-Jung Sung, Li-Ting Wang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Syun-Ming Jang
  • Publication number: 20220384606
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a sacrificial gate structure over an active region. A first spacer layer is formed along sidewalls and a top surface of the sacrificial gate structure. A first protection layer is formed over the first spacer layer. A second spacer layer is formed over the first protection layer. A third spacer layer is formed over the second spacer layer. The sacrificial gate structure is replaced with a replacement gate structure. The second spacer layer is removed to form an air gap between the first protection layer and the third spacer layer.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 1, 2022
    Inventors: Wei-Ting Chien, Liang-Yin Chen, Yi-Hsiu Liu, Tsung-Lin Lee, Huicheng Chang
  • Patent number: 11515206
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a gate structure over a fin structure. The semiconductor structure also includes a source/drain structure in the fin structure and adjacent to the gate structure. The semiconductor structure also includes a first contact plug over the source/drain structure. The semiconductor structure also includes a first via plug over the first contact plug. The semiconductor structure also includes a dielectric layer surrounding the first via plug. The first via plug includes a first group IV element and the dielectric layer includes the first group IV element and a second group IV element.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: November 29, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung-Po Hsieh, Su-Hao Liu, Hong-Chih Liu, Jing-Huei Huang, Jie-Huang Huang, Lun-Kuang Tan, Huicheng Chang, Liang-Yin Chen, Kuo-Ju Chen
  • Publication number: 20220376089
    Abstract: In an embodiment, a device includes: a fin on a substrate, fin having a Si portion proximate the substrate and a SiGe portion distal the substrate; a gate stack over a channel region of the fin; a source/drain region adjacent the gate stack; a first doped region in the SiGe portion of the fin, the first doped region disposed between the channel region and the source/drain region, the first doped region having a uniform concentration of a dopant; and a second doped region in the SiGe portion of the fin, the second doped region disposed under the source/drain region, the second doped region having a graded concentration of the dopant decreasing in a direction extending from a top of the fin to a bottom of the fin.
    Type: Application
    Filed: July 28, 2022
    Publication date: November 24, 2022
    Inventors: Chia-Ling Chan, Liang-Yin Chen, Wei-Ting Chien
  • Patent number: 11508831
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a sacrificial gate structure over an active region. A first spacer layer is formed along sidewalls and a top surface of the sacrificial gate structure. A first protection layer is formed over the first spacer layer. A second spacer layer is formed over the first protection layer. A third spacer layer is formed over the second spacer layer. The sacrificial gate structure is replaced with a replacement gate structure. The second spacer layer is removed to form an air gap between the first protection layer and the third spacer layer.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: November 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Ting Chien, Liang-Yin Chen, Yi-Hsiu Liu, Tsung-Lin Lee, Huicheng Chang
  • Publication number: 20220367632
    Abstract: The present disclosure relates generally to doping for conductive features in a semiconductor device. In an example, a structure includes an active region of a transistor. The active region includes a source/drain region, and the source/drain region is defined at least in part by a first dopant having a first dopant concentration. The source/drain region further includes a second dopant with a concentration profile having a consistent concentration from a surface of the source/drain region into a depth of the source/drain region. The consistent concentration is greater than the first dopant concentration. The structure further includes a conductive feature contacting the source/drain region at the surface of the source/drain region.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 17, 2022
    Inventors: Su-Hao Liu, Huicheng Chang, Chia-Cheng Chen, Liang-Yin Chen, Kuo-Ju Chen, Chun-Hung Wu, Chang-Miao Liu, Huai-Tei Yang, Lun-Kuang Tan, Wei-Ming You
  • Publication number: 20220367254
    Abstract: Semiconductor devices and methods of manufacture are described herein. A method includes forming an opening through an interlayer dielectric (ILD) layer to expose a contact etch stop layer (CESL) disposed over a conductive feature in a metallization layer. The opening is formed using photo sensitive materials, lithographic techniques, and a dry etch process that stops on the CESL. Once the CESL is exposed, a CESL breakthrough process is performed to extend the opening through the CESL and expose the conductive feature. The CESL breakthrough process is a flexible process with a high selectivity of the CESL to ILD layer. Once the CESL breakthrough process has been performed, a conductive fill material may be deposited to fill or overfill the opening and is then planarized with the ILD layer to form a contact plug over the conductive feature in an intermediate step of forming a semiconductor device.
    Type: Application
    Filed: July 22, 2022
    Publication date: November 17, 2022
    Inventors: Yu-Shih Wang, Po-Nan Yeh, U-Ting Chiu, Chun-Neng Lin, Chia-Cheng Chen, Liang-Yin Chen, Ming-Hsi Yeh, Kuo-Bin Huang
  • Publication number: 20220367686
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a semiconductor fin extending from a substrate. A dummy gate stack is formed over the semiconductor fin. The dummy gate stack extends along sidewalls and a top surface of the semiconductor fin. The semiconductor fin is patterned to form a recess in the semiconductor fin. A semiconductor material is deposited in the recess. An implantation process is performed on the semiconductor material. The implantation process includes implanting first implants into the semiconductor material and implanting second implants into the semiconductor material. The first implants have a first implantation energy. The second implants have a second implantation energy different from the first implantation energy.
    Type: Application
    Filed: November 18, 2021
    Publication date: November 17, 2022
    Inventors: Yu-Chang Lin, Liang-Yin Chen, Chun-Feng Nieh, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11502000
    Abstract: A method includes forming a metallic feature, forming an etch stop layer over the metallic feature, implanting the metallic feature with a dopant, forming a dielectric layer over the etch stop layer, performing a first etching process to etch the dielectric layer and the etch stop layer to form a first opening, performing a second etching process to etch the metallic feature and to form a second opening in the metallic feature, wherein the second opening is joined with the first opening, and filling the first opening and the second opening with a metallic material to form a contact plug.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: November 15, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Meng-Han Chou, Su-Hao Liu, Kuo-Ju Chen, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20220359286
    Abstract: A method includes forming a metallic feature, forming an etch stop layer over the metallic feature, implanting the metallic feature with a dopant, forming a dielectric layer over the etch stop layer, performing a first etching process to etch the dielectric layer and the etch stop layer to form a first opening, performing a second etching process to etch the metallic feature and to form a second opening in the metallic feature, wherein the second opening is joined with the first opening, and filling the first opening and the second opening with a metallic material to form a contact plug.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 10, 2022
    Inventors: Meng-Han Chou, Su-Hao Liu, Kuo-Ju Chen, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo