Patents by Inventor Lianhui Ding

Lianhui Ding has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10898885
    Abstract: According to one or more embodiments described, a zeolite supported catalyst may be synthesized by a process that includes combining a colloidal mixture with a metal oxide support material to form a support precursor material, processing the support precursor material to form a support material, and impregnating the support material with one or more metals to form the zeolite supported catalyst. The colloidal mixture may include nano-sized zeolite crystals, and the nano-sized zeolite crystals may have an average size of less than 100 nm.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: January 26, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Lianhui Ding, Essam Al-Sayed, Manal Al-Eid, Hanaa Habboubi
  • Patent number: 10898884
    Abstract: According to one or more embodiments, a nano-sized, mesoporous zeolite particle may include a microporous framework comprising a plurality of micropores having diameters of less than or equal to 2 nm and a BEA framework type. The nano-sized, mesoporous zeolite particle may also include a plurality of mesopores having diameters of greater than 2 nm and less than or equal to 50 nm. The zeolite particles may be integrated into hydrocracking catalysts and utilized for the cracking of heavy oils in a pretreatment process.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: January 26, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Lianhui Ding, Manal Al-Eid, Essam Al-Sayed, Kareemuddin Shaik, Abdennour Bourane
  • Publication number: 20210001313
    Abstract: A method for hydrocracking a hydrocarbon feedstock, the method comprising: contacting the hydrocarbon feedstock with a catalyst containing a nano-sized mesoporous zeolite composition under reaction conditions to produce a product stream containing at least 20 weight percent of hydrocarbons with 1-4 carbon atoms, wherein the nano-sized mesoporous zeolite composition is produced by a method that includes: mixing silica, a source of aluminum, and tetraethylammonium hydroxide to form an aluminosilicate fluid gel; drying the aluminosilicate fluid gel to form a dried gel mixture; subjecting the dried gel mixture to hydrothermal treatment to produce a zeolite precursor; adding cetyltrimethylammonium bromide (CTAB) to the zeolite precursor to form a templated mixture; subjecting the templated mixture to hydrothermal treatment to prepare a CTAB-templated zeolite; washing the CTAB-templated zeolite with distilled water; separating the CTAB-templated zeolite by centrifugation; and drying and calcining the CTAB-templated
    Type: Application
    Filed: September 17, 2020
    Publication date: January 7, 2021
    Applicant: SAUDI ARABIAN OIL COMPANY
    Inventors: Manal Eid, Lianhui Ding, Kareemuddin Shaik
  • Publication number: 20200368732
    Abstract: According to one or more embodiments, a nano-sized, mesoporous zeolite particle may include a microporous framework comprising a plurality of micropores having diameters of less than or equal to 2 nm and a BEA framework type. The nano-sized, mesoporous zeolite particle may also include a plurality of mesopores having diameters of greater than 2 nm and less than or equal to 50 nm. The zeolite particles may be integrated into hydrocracking catalysts and utilized for the cracking of heavy oils in a pretreatment process.
    Type: Application
    Filed: August 14, 2020
    Publication date: November 26, 2020
    Applicant: Saudi Arabian Oil Company
    Inventors: Lianhui Ding, Manal Al-Eid, Essam Al-Sayed, Kareemuddin Shaik, Abdennour Bourane
  • Patent number: 10807078
    Abstract: A method for synthesizing a nano-sized mesoporous zeolite composition, comprising: mixing silica, a source of aluminum, and tetraethylammonium hydroxide to form an aluminosilicate fluid gel; drying the aluminosilicate fluid gel to form a dried gel mixture; subjecting the dried gel mixture to hydrothermal treatment to produce a zeolite precursor; adding cetyltrimethylammonium bromide (CTAB) to the zeolite precursor to form a templated mixture; subjecting the templated mixture to hydrothermal treatment to prepare a CTAB-templated zeolite.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: October 20, 2020
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Manal Eid, Lianhui Ding, Kareemuddin Shaik
  • Patent number: 10793792
    Abstract: According to one or more embodiments presently described, a feedstock oil may be processed by a method which may include hydrotreating the feedstock oil to reduce or remove one or more of sulfur content, metals content, nitrogen content, or aromatics content to produce a hydrotreated oil stream; separating at least a portion of the hydrotreated oil stream into a at least a lesser boiling point oil fraction stream and a greater boiling point oil fraction stream in a first separator; hydrocracking the greater boiling point oil fraction stream; and steam cracking the lesser boiling point oil fraction stream.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: October 6, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Lianhui Ding, Essam Al-Sayed, Sherif Mohamed, Ibrahim Al-Nutaifi, Alberto Lozano Ballesteros, Ibrahim Abba
  • Patent number: 10773248
    Abstract: According to one or more embodiments, a nano-sized, mesoporous zeolite particle may include a microporous framework comprising a plurality of micropores having diameters of less than or equal to 2 nm and a BEA framework type. The nano-sized, mesoporous zeolite particle may also include a plurality of mesopores having diameters of greater than 2 nm and less than or equal to 50 nm. The zeolite particles may be integrated into hydrocracking catalysts and utilized for the cracking of heavy oils in a pretreatment process.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: September 15, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Lianhui Ding, Manal Al-Eid, Essam Al-Sayed, Kareemuddin Shaik, Abdennour Bourane
  • Patent number: 10696910
    Abstract: According to one embodiment, a heavy oil may be processed by a method that may include upgrading at least a portion of the heavy oil to form an upgraded oil, where the upgrading comprises contacting the heavy oil with a hydrodemetalization catalyst, a transition catalyst, a hydrodenitrogenation catalyst, and a hydrocracking catalyst to remove at least a portion of metals, nitrogen, or aromatics content from the heavy oil and form the upgraded oil. The method may further include passing at least a portion of the upgraded oil to a separation device that separates the upgraded oil into one or more transportation fuels; and where the final boiling point of the upgraded oil is less than or equal to 540° C.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: June 30, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Kareemuddin Shaik, Lianhui Ding, Mazin Tamimi, Ibrahim Abba, Abdennour Bourane
  • Patent number: 10696909
    Abstract: According to one embodiment, a heavy oil may be processed by a method that may include upgrading at least a portion of the heavy oil to form an upgraded oil, where the upgrading includes contacting the heavy oil with a hydrodemetalization catalyst, a transition catalyst, a hydrodenitrogenation catalyst, and a hydrocracking catalyst to remove at least a portion of metals, nitrogen, or aromatics content from the heavy oil and form the upgraded oil; and passing the upgraded oil to a steam cracker and steam cracking the upgraded oil to form a steam-cracked effluent; and where the final boiling point of the upgraded oil is less than or equal to 540° C.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: June 30, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Kareemuddin Shaik, Lianhui Ding, Mazin Tamimi, Ibrahim Abba, Abdennour Bourane
  • Patent number: 10689585
    Abstract: According to one embodiment, a heavy oil may be processed by a method that may include upgrading at least a portion of the heavy oil to form an upgraded oil, where the upgrading comprising contacting the heavy oil with a hydrodemetalization catalyst, a transition catalyst, a hydrodenitrogenation catalyst, a first hydrocracking catalyst, and a second hydrocracking catalyst downstream of the first hydrocracking catalyst to remove at least a portion of metals, nitrogen, or aromatics content from the heavy oil and form the upgraded oil. The final boiling point of the upgraded oil may be less than or equal to 540° C. The second hydrocracking catalyst cracks at least a portion of vacuum gas oil in the heavy oil. The first hydrocracking catalyst may comprise a greater average pore size than the second hydrocracking catalyst.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: June 23, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Kareemuddin Shaik, Lianhui Ding, Mazin Tamimi, Ibrahim Abba, Abdennour Bourane
  • Patent number: 10689587
    Abstract: According to an embodiment of the present disclosure, petrochemicals may be produced from crude oil by a process which includes passing the crude oil and hydrogen into a hydroprocessing reactor, separating the hydrotreated oil into a lesser boiling point fraction and a greater boiling point fraction, passing the lesser boiling point fraction to a pyrolysis section of a steam cracker to produce a pyrolysis effluent comprising olefins, aromatics, or both, passing the greater boiling point fraction to a gasifier, where the gasifier produces hydrogen, and passing at least a portion of the hydrogen produced by the gasifier to the hydroprocessing reactor.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: June 23, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Essam Al-Sayed, Omer Refa Koseoglu, Lianhui Ding, Abdennour Bourane, Alberto Lozano Ballesteros, Furqan Al Jumah
  • Publication number: 20200179912
    Abstract: According to one or more embodiments described, a zeolite supported catalyst may be synthesized by a process that includes combining a colloidal mixture with a metal oxide support material to form a support precursor material, processing the support precursor material to form a support material, and impregnating the support material with one or more metals to form the zeolite supported catalyst. The colloidal mixture may include nano-sized zeolite crystals, and the nano-sized zeolite crystals may have an average size of less than 100 nm.
    Type: Application
    Filed: February 13, 2020
    Publication date: June 11, 2020
    Applicant: Saudi Arabian Oil Company
    Inventors: Lianhui Ding, Essam Al-Sayed, Manal Al-Eid, Hanaa Habboubi
  • Publication number: 20200156052
    Abstract: Provided here are nano-sized mesoporous zeolite compositions and the methods of synthesis and use of these compositions. These nano-sized mesoporous zeolite compositions are synthesized from a mixture of silicon source and an aluminum source fumed or colloidal silica with aluminum powder or aluminum oxide. Also provided are methods for hydrocracking a hydrocarbon feedstock by using catalysts containing the nano-sized mesoporous zeolite composition.
    Type: Application
    Filed: November 19, 2018
    Publication date: May 21, 2020
    Applicant: Saudi Arabian Oil Company
    Inventors: Manal Eid, Lianhui Ding, Kareemuddin Shaik
  • Patent number: 10603657
    Abstract: According to one or more embodiments described, a zeolite supported catalyst may be synthesized by a process that includes combining a colloidal mixture with a metal oxide support material to form a support precursor material, processing the support precursor material to form a support material, and impregnating the support material with one or more metals to form the zeolite supported catalyst. The colloidal mixture may include nano-sized zeolite crystals, and the nano-sized zeolite crystals may have an average size of less than 100 nm.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: March 31, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Lianhui Ding, Essam Al-Sayed, Manal Al-Eid, Hanaa Habboubi
  • Patent number: 10563141
    Abstract: Embodiments for an integrated hydrotreating and steam pyrolysis process for the processing of crude oil comprising recycling the higher boiling point fraction of the upgraded crude oil to increase the yield of petrochemicals such as olefins and aromatics.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: February 18, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Lianhui Ding, Essam Al-Sayed, Duhaiman U. Al-Yami, Abdennour Bourane, Alberto Lozano Ballesteros, Ibrahim Abba
  • Patent number: 10407311
    Abstract: According to one or more embodiments disclosed herein, a mesoporous zeolite may be made by a method comprising contacting an initial zeolite material with ammonium hexafluorosilicate to modify the framework of the initial zeolite material, and forming mesopores in the framework-modified zeolite material. The contacting may form a framework-modified zeolite material. The mesoporous zeolites may be incorporated into catalysts.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: September 10, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Lianhui Ding, Essam Al-Sayed, Kareemuddin Shaik, Abdennour Bourane
  • Publication number: 20190016971
    Abstract: According to one embodiment, a heavy oil may be processed by a method that may include upgrading at least a portion of the heavy oil to form an upgraded oil, where the upgrading comprises contacting the heavy oil with a hydrodemetalization catalyst, a transition catalyst, a hydrodenitrogenation catalyst, and a hydrocracking catalyst to remove at least a portion of metals, nitrogen, or aromatics content from the heavy oil and form the upgraded oil. The method may further include passing at least a portion of the upgraded oil to a separation device that separates the upgraded oil into one or more transportation fuels; and where the final boiling point of the upgraded oil is less than or equal to 540° C.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 17, 2019
    Applicant: Saudi Arabian Oil Company
    Inventors: Kareemuddin Shaik, Lianhui Ding, Mazin Tamimi, Ibrahim Abba, Abdennour Bourane
  • Publication number: 20190016976
    Abstract: According to one embodiment, a heavy oil may be processed by a method that may include upgrading at least a portion of the heavy oil to form an upgraded oil, where the upgrading includes contacting the heavy oil with a hydrodemetalization catalyst, a transition catalyst, a hydrodenitrogenation catalyst, and a hydrocracking catalyst to remove at least a portion of metals, nitrogen, or aromatics content from the heavy oil and form the upgraded oil. The method may further include passing at least a portion of the upgraded oil to a refinery operation.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 17, 2019
    Applicant: Saudi Arabian Oil Company
    Inventors: Kareemuddin Shaik, Lianhui Ding, Mazin Tamimi, Ibrahim Abba, Abdennour Bourane
  • Publication number: 20190016970
    Abstract: According to one embodiment, a heavy oil may be processed by a method that may include upgrading at least a portion of the heavy oil to form an upgraded oil, where the upgrading includes contacting the heavy oil with a hydrodemetalization catalyst, a transition catalyst, a hydrodenitrogenation catalyst, and a hydrocracking catalyst to remove at least a portion of metals, nitrogen, or aromatics content from the heavy oil and form the upgraded oil; and passing the upgraded oil to a steam cracker and steam cracking the upgraded oil to form a steam-cracked effluent; and where the final boiling point of the upgraded oil is less than or equal to 540° C.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 17, 2019
    Applicant: Saudi Arabian Oil Company
    Inventors: Kareemuddin Shaik, Lianhui Ding, Mazin Tamimi, Ibrahim Abba, Abdennour Bourane
  • Publication number: 20190016977
    Abstract: According to one embodiment, a heavy oil may be processed by a method that may include upgrading at least a portion of the heavy oil to form an upgraded oil, where the upgrading comprising contacting the heavy oil with a hydrodemetalization catalyst, a transition catalyst, a hydrodenitrogenation catalyst, a first hydrocracking catalyst, and a second hydrocracking catalyst downstream of the first hydrocracking catalyst to remove at least a portion of metals, nitrogen, or aromatics content from the heavy oil and form the upgraded oil. The final boiling point of the upgraded oil may be less than or equal to 540° C. The second hydrocracking catalyst cracks at least a portion of vacuum gas oil in the heavy oil. The first hydrocracking catalyst may comprise a greater average pore size than the second hydrocracking catalyst.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 17, 2019
    Applicant: Saudi Arabian Oil Company
    Inventors: Kareemuddin Shaik, Lianhui Ding, Mazin Tamimi, Ibrahim Abba, Abdennour Bourane