Patents by Inventor LiJie Yu

LiJie Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10047679
    Abstract: A monitoring system for a gas turbine includes a processor configured to receive an operating signal indicating an operating parameter of the gas turbine. The processor is configured to predict an occurrence of a lean blowout (LBO) event based on the operating parameter and an entropy ratio of combustion dynamics associated with a combustor of the gas turbine, wherein the LBO event corresponds to when the combustor stops firing. The processor is configured to send an alarm signal indicating the predicted LBO event to an electronic device prior to the occurrence of the LBO event.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: August 14, 2018
    Assignee: General Electric Company
    Inventors: Xiaomo Jiang, Ilan Leibu, Lijie Yu, Devang Jagdish Gandhi, Karen Warren Miller, Matthew Everett Moore, Ketan Kalele
  • Publication number: 20170356349
    Abstract: A monitoring system for a gas turbine includes a processor configured to receive an operating signal indicating an operating parameter of the gas turbine. The processor is configured to predict an occurrence of a lean blowout (LBO) event based on the operating parameter and an entropy ratio of combustion dynamics associated with a combustor of the gas turbine, wherein the LBO event corresponds to when the combustor stops firing. The processor is configured to send an alarm signal indicating the predicted LBO event to an electronic device prior to the occurrence of the LBO event.
    Type: Application
    Filed: June 14, 2016
    Publication date: December 14, 2017
    Inventors: Xiaomo Jiang, Ilan Leibu, Lijie Yu, Devang Jagdish Gandhi, Karen Warren Miller, Matthew Everett Moore, Ketan Kalele
  • Patent number: 9791351
    Abstract: Systems and methods for gas turbine combustion profile monitoring are disclosed. In one embodiment, a method for detecting an anomaly in a combustion section of a gas turbine is disclosed. The method includes receiving, from a plurality of thermal sensors disposed around an exhaust section of a gas turbine, exhaust profile data of the gas turbine. The method further analyzes the exhaust profile data to calculate statistical features associated with a peak-trough pattern. The method further determines, using a machine learning algorithm, that the statistical features are abnormal. In response to the determination, the method processes the exhaust profile data for a predetermined period of time and reports an anomaly in a combustion section of the gas turbine if the statistical features remain abnormal for the predetermined period of time.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: October 17, 2017
    Assignee: General Electric Company
    Inventors: Karen Warren Miller, Lijie Yu, Robert Iasillo
  • Patent number: 9719366
    Abstract: Systems and methods for blade health monitoring are provided. According to one embodiment of the disclosure, a system may include a feature extraction module and an anomaly detection module in communication with the extraction module. The feature extraction module may be configured to continuously receive blade passing signal data associated with clearance of a blade and pre-process the blade passing signal data. Blade clearance feature data may be extracted from the blade passing signal data prior to transmission to the anomaly detection module. The anomaly detection module may be configured to normalize the blade clearance feature data received from the extraction module, analyze the blade clearance feature data to detect a shift in the clearance of the blade, and determine an abnormality of the blade based on the shift exceeding a predetermined shift threshold.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: August 1, 2017
    Assignee: General Electric Company
    Inventors: Lijie Yu, Venkatesh Rajagopalan, Sachin Srivastava, Mayank Lalan
  • Publication number: 20170024649
    Abstract: Some embodiments are associated with a receipt, at a feature learning platform, of sensor data associated with normal operation of an industrial asset, the sensor data including values for a plurality of sensors over a period of time. The feature learning platform may extract a plurality of features via hierarchically deep learning, which may capture characteristics of normal operation of the industrial asset and provide the learned features to a classification modeling platform. The classification modeling platform may then create classification models utilizing the learned features, and the classification models may be executed to automatically identify a potential anomaly for an operating industrial asset.
    Type: Application
    Filed: July 24, 2015
    Publication date: January 26, 2017
    Inventors: Weizhong Yan, Lijie YU
  • Publication number: 20160231199
    Abstract: Systems and methods for gas turbine combustion profile monitoring are disclosed. In one embodiment, a method for detecting an anomaly in a combustion section of a gas turbine is disclosed. The method includes receiving, from a plurality of thermal sensors disposed around an exhaust section of a gas turbine, exhaust profile data of the gas turbine. The method further analyzes the exhaust profile data to calculate statistical features associated with a peak-trough pattern. The method further determines, using a machine learning algorithm, that the statistical features are abnormal. In response to the determination, the method processes the exhaust profile data for a predetermined period of time and reports an anomaly in a combustion section of the gas turbine if the statistical features remain abnormal for the predetermined period of time.
    Type: Application
    Filed: February 6, 2015
    Publication date: August 11, 2016
    Inventors: Karen Warren Miller, Lijie Yu, Robert Iasillo
  • Publication number: 20150081229
    Abstract: A system including: at least one computing device configured to monitor a compressor blade in a turbomachine by: extracting time of arrival (TOA) data about the compressor blade at a defined interval; correlating turbomachine operating conditions with the TOA data; extracting resonance data about the compressor blade during startup or shutdown of the turbomachine, and extracting static deflection and tip clearance data about the compressor blade during steady state operation of the turbomachine; creating a baseline compressor blade comparison level based upon the extracted resonance data, extracted static deflection and tip clearance data, and correlation between the turbomachine operating conditions and the TOA data; and iteratively extracting updated TOA data and performing the correlating, the extracting of the resonance data, static deflection and tip clearance data using the updated TOA data at the defined interval to create an updated baseline compressor blade comparison level.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 19, 2015
    Applicant: General Electric Company
    Inventors: Lijie Yu, Adil Ansari, Vivek Venugopal Badami, John Thomas Bliss, Rahul Chadha, Rajan Gupta
  • Publication number: 20140369833
    Abstract: Systems and methods for blade health monitoring are provided. According to one embodiment of the disclosure, a system may include a feature extraction module and an anomaly detection module in communication with the extraction module. The feature extraction module may be configured to continuously receive blade passing signal data associated with clearance of a blade and pre-process the blade passing signal data. Blade clearance feature data may be extracted from the blade passing signal data prior to transmission to the anomaly detection module. The anomaly detection module may be configured to normalize the blade clearance feature data received from the extraction module, analyze the blade clearance feature data to detect a shift in the clearance of the blade, and determine an abnormality of the blade based on the shift exceeding a predetermined shift threshold.
    Type: Application
    Filed: June 12, 2013
    Publication date: December 18, 2014
    Inventors: Lijie Yu, Venkatesh Rajagopalan, Sachin Srivastava, Mayank Lalan
  • Publication number: 20120245479
    Abstract: A system for monitoring physiology, having: a RADAR transmitter and a RADAR receiver; a state estimation module configured to process a returned RADAR signal to detect a presence of motion and set a motion state upon said presence of motion, said state estimation module configured to detect a presence of one or more physiological parameters including heartbeat and respiration, and said state estimation module configured to assign a still state or a concern state based on said presence of physiological parameters; a rate estimation module configured to estimate one or more estimated physiological rates including an estimated respiration rate and an estimated heart rate; and an alerting module configured to provide an alert if an alert value exceeds an alert value threshold, wherein the alert value is derived from at least one of the motion state, concern state, still state and the estimated physiological rates.
    Type: Application
    Filed: March 23, 2011
    Publication date: September 27, 2012
    Inventors: Meena Ganesh, Jeffrey Michael Ashe, Lijie Yu, Catherine Mary Graichen
  • Patent number: 8105552
    Abstract: Total analysis systems and methods for simultaneously monitoring a suite of biological and/or chemical species in water and/or other process systems are disclosed. The system provides a sample-volume controlled sensor array comprising a fluid delivery device and a plurality of optical sensor elements for determining the presence and total concentrations of multiple analytes in the process system simultaneously. Image identification algorithms are provided for identifying the analytes based on image intensity, color pattern, positional arrangement, and the like. The methods incorporate multivariate optimization algorithms to analyze multiple sensor responses. This produces analytical results that are typically difficult to obtain without full system or variable compensation. The improved array response may then be utilized to measure, monitor, and control the concentration of analytes in the chemical or biological sample or water system.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: January 31, 2012
    Assignee: General Electric Company
    Inventors: Caibin Xiao, Radislav A. Potyrailo, William G. Morris, Scott M. Boyette, LiJie Yu, Theodore J. Cecconie, Andrew M. Leach, Prashant V. Shrikhande
  • Patent number: 7826943
    Abstract: A method for diagnosing faults in a particular device within a fleet of devices is provided. The method comprises receiving performance data related to one or more parameters associated with a fleet of devices and processing the performance data to detect one or more trend shifts in the one or more parameters. The method then comprises detrending the one or more parameters to derive noise-adjusted performance data related to a particular parameter associated with a particular device. The method further comprises generating a fleet-based diagnostic model based on trend patterns and data characteristics associated with the fleet of devices. The fleet-based diagnostic model comprises one or more fuzzy rules defining one or more expected trend shift data ranges for the one or more parameters associated with the fleet of devices.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: November 2, 2010
    Assignee: General Electric Company
    Inventors: Lijie Yu, Daniel Joseph Cleary, Mark David Osborne
  • Publication number: 20100178208
    Abstract: Total analysis systems and methods for simultaneously monitoring a suite of biological and/or chemical species in water and/or other process systems are disclosed. The system provides a sample-volume controlled sensor array comprising a fluid delivery device and a plurality of optical sensor elements for determining the presence and total concentrations of multiple analytes in the process system simultaneously. Image identification algorithms are provided for identifying the analytes based on image intensity, color pattern, positional arrangement, and the like. The methods incorporate multivariate optimization algorithms to analyze multiple sensor responses. This produces analytical results that are typically difficult to obtain without full system or variable compensation. The improved array response may then be utilized to measure, monitor, and control the concentration of analytes in the chemical or biological sample or water system.
    Type: Application
    Filed: March 24, 2010
    Publication date: July 15, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Caibin Xiao, Radislav A. Potyrailo, William G. Morris, Scott M. Boyette, LiJie Yu, Theodore J. Cecconie, Andrew M. Leach, Prashant V. Shrikhande
  • Patent number: 7723120
    Abstract: Total analysis systems and methods for simultaneously monitoring a suite of biological and/or chemical species in water and/or other process systems are disclosed. The system provides a sample-volume controlled sensor array comprising a fluid delivery device and a plurality of optical sensor elements for determining the presence and total concentrations of multiple analytes in the process system simultaneously. Image identification algorithms are provided for identifying the analytes based on image intensity, color pattern, positional arrangement, and the like. The methods incorporate multivariate optimization algorithms to analyze multiple sensor responses. This produces analytical results that are typically difficult to obtain without full system or variable compensation. The improved array response may then be utilized to measure, monitor, and control the concentration of analytes in the chemical or biological sample or water system.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: May 25, 2010
    Assignee: General Electric Company
    Inventors: Caibin Xiao, Radislav A. Potyrailo, William G. Morris, Scott M. Boyette, LiJie Yu, Theodore J. Cecconie, Andrew M. Leach, Prashant V. Shrikhande
  • Patent number: 7455099
    Abstract: A technique is disclosed for evaluating and monitoring performance of a heat exchanger system. Operating parameters of the system are monitored and fouling factors for heat transfer surfaces of the exchanger are determined. Trending of fouling may be performed over time based upon the fouling factors, and a model of fouling may be selected from known sets of models, or a model may be developed or refined. Fluid treatment, such as water treatment regimes may be taken into account in evaluation of fouling. An automated knowledge based analysis algorithm may diagnose possible caused of fouling based upon sensed and observed parameters and conditions. Corrective actions may be suggested and the system controlled to reduce, avoid or correct for detected fouling.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: November 25, 2008
    Assignee: General Electric Company
    Inventors: Mark David Osborn, Vijaysai Prasad, Lijie Yu, Venkatarao Ryali, Sunil Shirish Shah, Ivy Wai Man Chong, Shirley Suet-Yee Au, Nishith Pramod Vora
  • Publication number: 20080243328
    Abstract: A method for diagnosing faults in a particular device within a fleet of devices is provided. The method comprises receiving performance data related to one or more parameters associated with a fleet of devices and processing the performance data to detect one or more trend shifts in the one or more parameters. The method then comprises detrending the one or more parameters to derive noise-adjusted performance data related to a particular parameter associated with a particular device. The method further comprises generating a fleet-based diagnostic model based on trend patterns and data characteristics associated with the fleet of devices. The fleet-based diagnostic model comprises one or more fuzzy rules defining one or more expected trend shift data ranges for the one or more parameters associated with the fleet of devices.
    Type: Application
    Filed: April 2, 2007
    Publication date: October 2, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Lijie Yu, Daniel Joseph Cleary, Mark David Osborn
  • Patent number: 7401063
    Abstract: The present invention provides a computer implemented method for maintaining a knowledge base. The method taking as input, text examples that are tagged with a structural markup language; and maps knowledge nodes in the knowledge base with the tagged examples to determine: (1) the knowledge nodes that best match the tagged examples, and (2) the knowledge nodes that are best connected to the tagged examples. The results are displayed to the user, who verifies that the tagged examples match the selected knowledge nodes. Based on the user response, indices of the knowledge nodes are updated. The method may further include determining discrepancies between the existing knowledge base and the tagged examples, and further displaying the discrepancies to the user. The user can update the missing information in the knowledge base to remove the discrepancies in the existing knowledge base.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: July 15, 2008
    Assignee: General Electric Company
    Inventors: Paul Edward Cuddihy, Jeremiah Francis Donoghue, Steven Hector Azzaro, Timothy Lee Johnson, Daniel Joseph Cleary, Lijie Yu
  • Patent number: 7379799
    Abstract: A method for diagnosing and classifying faults in a system is provided. The method comprises acquiring operational data for at least one of a system, one or more subsystems of the system or one or more components of the one or more subsystems. Then, the method comprises analyzing the operational data using one or more diagnostic models. Each diagnostic model uses the operational data to determine a probability of fault associated with at least one of the one or more components or the one or more subsystems. Finally, the method comprises deriving an overall probability of fault for at least one of the system, the one or more subsystems, or the one or more components using the one or more probabilities of fault determined by the one or more diagnostic models and one or more hierarchical relationships between the subsystems and components of the system.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: May 27, 2008
    Assignee: General Electric Company
    Inventors: Daniel Joseph Cleary, LiJie Yu, Mark David Osborn
  • Publication number: 20080039993
    Abstract: A method for diagnosing and classifying faults in a system is provided. The method comprises acquiring operational data for at least one of a system, one or more subsystems of the system or one or more components of the one or more subsystems. Then, the method comprises analyzing the operational data using one or more diagnostic models. Each diagnostic model uses the operational data to determine a probability of fault associated with at least one of the one or more components or the one or more subsystems. Finally, the method comprises deriving an overall probability of fault for at least one of the system, the one or more subsystems, or the one or more components using the one or more probabilities of fault determined by the one or more diagnostic models and one or more hierarchical relationships between the subsystems and components of the system.
    Type: Application
    Filed: June 29, 2005
    Publication date: February 14, 2008
    Inventors: Daniel Cleary, LiJie Yu, Mark Osborn
  • Publication number: 20070092407
    Abstract: Total analysis systems and methods for simultaneously monitoring a suite of biological and/or chemical species in water and/or other process systems are disclosed. The system provides a sample-volume controlled sensor array comprising a fluid delivery device and a plurality of optical sensor elements for determining the presence and total concentrations of multiple analytes in the process system simultaneously. Image identification algorithms are provided for identifying the analytes based on image intensity, color pattern, positional arrangement, and the like. The methods incorporate multivariate optimization algorithms to analyze multiple sensor responses. This produces analytical results that are typically difficult to obtain without full system or variable compensation. The improved array response may then be utilized to measure, monitor, and control the concentration of analytes in the chemical or biological sample or water system.
    Type: Application
    Filed: October 26, 2005
    Publication date: April 26, 2007
    Applicant: General Electric Company
    Inventors: Caibin Xiao, Radislav Potyrailo, William Morris, Scott Boyette, LiJie Yu, Theodore Cecconie, Andrew Leach, Prashant Shrikhande
  • Patent number: 7031878
    Abstract: Automated systems and methods for diagnosing the cause of a trend shift in performance data associated with a system including selecting a fuzzy model describing how the mean associated with a parameter shifts when a predetermined problem occurs and receiving performance data associated with the system. The diagnostic systems and methods also including applying a preferred set of piecewise regressions. The diagnostic systems and methods further including selecting a start date and selecting data sets near the start date and an end date that have a relatively large size without violating normal scatter. The diagnostic systems and methods still further including measuring the mean shift between a plurality of samples using one or more statistical tests and combining the results with the fuzzy model to achieve a diagnosis.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: April 18, 2006
    Assignee: General Electric Company
    Inventors: Paul E. Cuddihy, Daniel J. Cleary, LiJie Yu